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Abstract. Deep learning models are vulnerable to performance degra-
dation when encountering out-of-distribution (OOD) images, potentially
leading to misdiagnoses and compromised patient care. These shortcom-
ings have led to great interest in the field of OOD detection. Existing
unsupervised OOD (U-OOD) detection methods typically assume that
OOD samples originate from an unconcentrated distribution complemen-
tary to the training distribution, neglecting the reality that deployed
models passively accumulate task-specific OOD samples over time. To
better reflect this real-world scenario, we introduce Iterative Deployment
Exposure (IDE), a novel and more realistic setting for U-OOD detection.
We propose CSO, a method for IDE that starts from a U-OOD detector
that is agnostic to the OOD distribution and slowly refines it during
deployment using observed unlabeled data. CSO uses a new U-OOD
scoring function that combines the Mahalanobis distance with a nearest-
neighbor approach, along with a novel confidence-scaled few-shot OOD
detector to effectively learn from limited OOD examples. We validate our
approach on a dedicated benchmark, showing that our method greatly
improves upon strong baselines on three medical imaging modalities.
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1 Introduction

Deep learning (DL) models fundamentally rely on the premise that the training
data distribution aligns with that of the test data. However, this assumption
often fails in real-world situations where the performance of a DL model diverges
from its initial benchmark due to encounters with out-of-distribution (OOD)
samples. This phenomenon is highly problematic in medical imaging, where the
dependability of DL models is critical for safe, prolonged use in the field.

These shortcomings have sparked great interest in the field of OOD detec-
tion [7, 27, 29], and unsupervised OOD (U-OOD) detection in particular. Unlike
supervised OOD detection, U-OOD assumes neither access to training labels nor
OOD samples, thereby encompassing a more generally applicable albeit more
challenging setting [2, 5, 6, 12, 14, 15]. The core principle of U-OOD is to identify
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Fig. 1. Iterative deployment exposure. The initial detector, trained on unlabeled
ID data, is iteratively refined with unlabeled deployment samples.

the level sets of the in-distribution (ID) training data and establish a threshold
to distinguish OOD samples, where the assumption is that OOD samples are
the complement of the ID and therefore unconcentrated [21, 23].

However, this assumption fails to consider the underlying motivation of OOD
detection, that is, improving the reliability of deployed downstream models.
Treating OOD data as arising from a generic, unconcentrated distribution is
a disconnect from the reality that deployment environments inherently impose
a specific, concentrated OOD context. We argue that the OOD context must be
inferred from the deployment setting, and, in turn, the deployment context fully
determines a concentrated OOD distribution. As this context depends on the
deployment, U-OOD works that synthesize anomalies a priori (e.g., [20, 25]) to
simulate the OOD distribution are inadequate. Instead, an approach where an
initial U-OOD detector, agnostic to the OOD distribution, is gradually updated
during deployment to consider the actual OOD distribution is needed (Fig. 1).

Yet, current U-OOD research has mainly neglected this important consider-
ation. While related fields like OOD detection with in-the-wild data [3, 9] and
OOD test-time adaptation [4, 28] exist, they are predicated on the availability
of a large number of test samples: the former relies on a large set of unlabeled
data consisting of both ID and OOD samples, while the latter uses the entire
unlabeled test set to update a model. In both cases, hundreds of OOD samples
are used to update their respective models, and performance is only measured
after seeing all of them. Consequently, this is often unrealistic, considering that
OOD samples can be scarce in medical applications.

Instead, we focus on improving detection with only a few OOD samples and
tackle the realistic setting where this process is iterative: detect OOD samples,
update the OOD detector, and repeat the procedure with a refined model several
times. Consequently, evaluating U-OOD detectors should extend beyond a single
instance and consider their effectiveness over time. We refer to this setting as
IDE (Iterative Deployment Exposure). Hence, in this work, we,

1. introduce the problem of IDE for U-OOD detection, which closely matches
the reality of model deployment.
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2. introduce new metrics and benchmarks to evaluate methods in the IDE
setting.

3. propose CSO, a novel method for IDE that outperforms strong baselines
from related fields.

2 Iterative Deployment Exposure

In U-OOD detection, the training distribution of the downstream model is called
the in distribution Pin, and the out distribution Pout is assumed to be its com-
plement. Given its large support, producing a set of OOD samples representative
of Pout for supervised classification of ID vs. OOD samples is intractable. In-
stead, U-OOD detection methods rely on in-distribution (ID) samples to train
a detector σin : X → R that scores the OOD-ness of test samples at inference
time. Critically, the likelihood of observing a specific image from Pout is not
uniform once a downstream task is established and the model is deployed in a
given environment. Instead, OOD samples seen during the operation of the de-
ployed system constrain Pout to the specific application. The goal of IDE is to
progressively enrich the detector σin with observed OOD samples, thus adapting
the detection model to the deployment environment.

More specifically, an IDE system builds a sequence of detectors st(x) : X 7→ R
for time steps t ∈ {0, 1, 2, . . .}. The sequence starts with the base U-OOD de-
tector, s0 = σin, and progressively adapts to the OOD samples observed af-
ter deployment. At each time t, the detector st is trained with the dataset of
samples observed until time step t, denoted Dt = Dtrain ∪ Ddeploy

t . We assume
that Ddeploy

0 = ∅. Crucially, not all elements in Dt are labeled as ID or OOD.
While elements of Dtrain are known to come from distribution Pin and are,
therefore, ID samples, elements of Ddeploy

t are unlabeled. These samples of the
deployment distribution Pdeploy, following [3, 9], are modeled with the Huber
contamination model [8],

Pdeploy = (1− π)Pin + πPout, (1)

with contamination ratio π.
To address the lack of labels in Ddeploy

t , st−1 is used to pseudo-label the
elements of Ddeploy

t for training st. Hence, at each time t, Dt can be split into
two disjoint subsets Din

t and Dout
t containing the samples labeled as ID and

OOD, respectively. For simplicity and without loss of generality, we assume that
the deployment dataset Ddeploy

t grows K elements at each time step, whereby∣∣∣Ddeploy
t

∣∣∣ = t ·K. We will also omit the index t where not explicitly needed.

2.1 Model

The main challenge of OOD detection is the scarcity of representative OOD sam-
ples. In IDE, the expected number of OOD samples at time step t is π · t · K,
which for a small t is too small to effectively train a binary classifier, preventing
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us from simply using binary classifiers to model the detector st. As t increases,
however, the feasibility of training a binary classifier improves. We, therefore,
design our detection model st to behave as a few-shot learner s− when t is
close to 0 and to gradually transition towards a strong binary learner s+ as
t increases. Formally, we model the detector st as a convex combination of two
learner modalities controlled by a mixing factor αt,

st(x) = (1− αt)s
−
t (x) + αts

+
t (x). (2)

The key difference between the learners s− and s+ lies in their inductive bi-
ases. The few-shot learner s− is a low-variance/high-bias classifier with strong
assumptions about in- and out-distributions. Its design is based on the U-OOD
detector σin, as detailed below. In contrast, the strong learner s+ is a low-bias
binary classifier, and its architecture can be chosen according to the nature of
the input space X (e.g., a CNN or a transformer architecture for image data), as
our approach is agnostic to the internal specifics of s+. At each step t, both s−t
and s+t are trained independently with the dataset Dt pseudo-labeled with st−1.

The factor αt ∈ [0, 1] controls the transition between both models and is
proportional to the number of elements pseudo-labeled as OOD,

αt = min
(
1, β ·

∣∣Dout
t

∣∣) , (3)

where the factor β is a hyperparameter of our method. We refer to our method
as CSO (confidence-scaled U-OOD detector). The next sections describe our
U-OOD detector σin and how it is used to define the few-shot learner s−.

U-OOD detector: Our U-OOD detector combines elements from the Maha-
lanobis anomaly detector (MahaAD) [19], known for its robustness and speed [2],
and from non-parametric nearest-neighbor scoring methods [1, 17, 24]. As in Ma-
haAD, given the collection of ID samples Din = {xi}Ni=1, we fit a Gaussian distri-
bution parameterized by the data mean µ and covariance matrix Σ. To prevent
numerical problems with near-singular covariance matrices in high-dimensional
or low-data regimes, we use shrinkage following the standard hyperparameter-
free method of [11]. MahaAD uses the induced Mahalanobis distance dΣ′(x,µ)
between µ and a test sample x to estimate its OOD score. We instead use this
distance to perform a 2-NN search (following, e.g., [1]) and score test samples
with the average distance to their 2 nearest neighbors,

σin(x) =
1

2

∑
x′∈N2

Σ′ (x)

dΣ′(x,x′), (4)

where N2
Σ′(x) denotes the 2-nearest neighbors of x in the training data measured

with the Mahalanobis distance induced by Σ′. We refer to this as MkNN.
The detector σin defined in Eq. (4) is inappropriate for image samples, as

the Mahalanobis distance is not a reliable measure of image similarity on high-
dimensional spaces. Instead, when dealing with images, we first describe each
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image xi with a sequence of feature vectors {fℓ(xi)}Lℓ=1, where fℓ denotes the
result of applying global average pooling on the feature map of the ℓ-th layer
of a pre-trained convolutional neural network f . We then use the descriptors
of the training images to build a collection of layer-wise detectors {σin

ℓ }Lℓ=1. In
particular, the detector σin

ℓ at layer ℓ applies the Eq. (4) with the covariance
matrix Σ′

ℓ computed from the collection of features {fℓ(xi)}Ni=1. The final OOD
score for a test image x is the sum of the scores over all layers,

σin(x) =

L∑
ℓ=1

σin
ℓ (fℓ(x)). (5)

Few-shot learner s−: Our few-shot learner extends the OOD detector σin

trained with Din by incorporating a twin detector σout trained with Dout. The
OOD score of the few-shot learner is computed as the difference between both
detectors,

s−(x) = σin(x)− λσout(x), (6)

where the factor λ controls the influence of σout in the final score. The value
of λ depends on the confidence levels of the detectors, which, in turn, rely on
the contents in Din and Dout.

To measure the confidence of a detector σ trained with the dataset D, we
assess its variability under bootstrapping. More specifically, we produce M boot-
strap samples {D(m)}Mm=1 of N elements randomly sampled from D with replace-
ment, and compute the covariance matrices Σ(m) for each sample D(m). The
uncertainty of the detector is measured as the variability of the bootstrapped
covariance matrices,

U(D) =
1

Md2

M∑
m=1

∥∥∥Σ(m) − Σ̄
∥∥∥2
F
, (7)

where Σ̄ = 1
M

∑
m Σ(m). The factor λ is then computed as the ratio between

the uncertainties of the detectors,

λ = min

(
1, γ

U(Din)

U(Dout)

)
, (8)

where γ > 0 is a hyperparameter of our method. If no OOD samples are available,
U(Dout) → ∞ and λ = 0, thus making the few-shot learner s− equivalent to the
base OOD detector σin.

When working with image data, we proceed layer by layer, as previously
discussed for the U-OOD detector. In particular, we build a few-shot learner s−ℓ
per each layer ℓ of the feature extractor f , and the final score is the sum of the
layer-wise scores,

s−(x) =

L∑
ℓ=1

s−ℓ (fℓ(x)). (9)
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3 Experiments

3.1 Experimental set-up

Datasets: We introduce three IDE benchmarks to compare methods comprising
various modalities, contamination ratios, and other settings. The samples for
evaluating the methods and those in Ddeploy

t do not overlap.

1. NIH [26]: Training: 4’261 healthy chest X-rays. Testing: 250 healthy scans
as ID and 250 pathological chest X-rays as OOD. All methods see T = 10
steps of K = 50 test samples, with contamination π = 0.2.

2. MURA [16]: Training: 5’106 musculoskeletal radiographs of fingers. Test-
ing: 250 finger scans as ID with scans of elbows, forearms, hands, humeri,
shoulders, and wrists as OOD, where T = 5, K = 100, and π = 0.1.

3. DRD [6]: Training: 25’809 healthy retinal fundus photographs as ID. Test-
ing: 250 healthy scans as ID, with 250 scans of strongest level of diabetic
retinopathy as OOD, where T = 5, K = 50, and π = 0.1.

Baselines: We compare our method to seven baselines that comprise the top-
performing methods from related fields: AdaODD [28], ETLT [4], SAL [3], BCE [13],
the Mahalanobis difference (MDiff) [22], and HSC [13]. Furthermore, we include
MahaAD [19] as a U-OOD baseline. All methods use the same ImageNet pre-
trained backbone. To ensure fairness, all methods use the same grid search proce-
dure to set their hyperparameters. We measure the performance of each method
on the CIFAR10 experiment Plane:Rest and select the highest-performing con-
figuration over the grid.

Evaluation metrics: In contrast with previous works, we are interested in mea-
suring the quality of the OOD detector over time. As such, we propose two met-
rics that consider this aspect: the Area Under the FPR@95 curve (AUF) and the
Area Under the AUC curve (AUA). These are computed by first evaluating the
FPR@95 and AUC at every timestep and plotting the resulting FPR@95/AUC
curves with respect to t. Then, the AUF and AUA are given by the area under
the FPR@95 and AUC curves, respectively, normalized by the time elapsed.

Implementation details: For s−, we extract features from L = 4 layers at
the end of every ResNet-18 block and normalize the features of the final layer
following [4, 18]. The binary classifier s+ also uses a ResNet-18 architecture. It
is trained with Adam [10] using a learning rate of 10−5 and batch size 256 for
ten epochs on NIH and an equivalent number of iterations on the other datasets.
We apply data augmentation in the form of random resized crops, color jitter,
and horizontal flips and initialize the binary classifier with the weights from the
previous timestep. At every step, the elements of Ddeploy

t are re-labeled with
the current model st(x) using a threshold. The threshold is determined on the
training data such that 95% is considered in-distribution. We standardize the



Iterative Deployment Exposure 7

Table 1. Comparative evaluation. We report the mean of the AUF (↓) and AUA
(↑) over five trials. Bold and underlined indicate best and second best, respectively.
Our method obtains the best performance overall.

NIH MURA DRD Mean

AUF AUA AUF AUA AUF AUA AUF AUA

SAL 91.5±6.3 58.3±12.1 90.0±8.3 56.6±9.2 77.4±8.9 67.3±7.9 86.3 60.7
HSC 70.4±0.9 78.6±0.2 68.8±6.5 79.8±2.3 81.8±2.0 71.6±1.3 73.7 76.7
ETLT 54.9±4.0 82.0±1.0 61.5±4.9 86.5±0.7 64.8±2.0 78.3±1.1 60.4 82.3
BCE 60.1±16.7 74.0±9.6 56.8±8.2 84.3±3.1 60.5±16.9 80.3±7.3 59.1 79.5
MahaAD 53.8±3.9 85.3±0.9 47.0±4.5 90.8±0.7 71.4±3.9 78.1±1.0 57.4 84.7
AdaODD 46.9±5.5 87.0±0.9 48.3±7.9 88.6±1.3 57.8±4.4 83.5±1.1 51.0 86.4
MDiff 48.1±4.4 83.0±2.1 42.9±6.6 91.3±1.1 60.3±4.6 82.7±3.1 50.4 85.7
CSO (ours) 34.9±6.1 90.9±1.7 37.5±5.6 91.8±0.9 61.9±5.6 83.1±1.6 44.8 88.6

scores of s+ and s− before combining them to ensure they have similar scales. The
hyperparameters β and γ were set via the grid search to 1/300 and 3, respectively.
We found CSO robust to their settings, as shown in the next section.

3.2 Results

Tab. 1 reports the results on our benchmark. Of all methods, SAL, HSC, ETLT,
and BCE do not outperform the unsupervised MahaAD baseline on average.
BCE is especially inconsistent; for instance, it achieves excellent results on DRD
but performs below average in other cases, demonstrating the need for a more
robust method. In contrast, AdaODD and MDiff score consistently high in all
experiments. Nonetheless, they are outclassed by CSO, which reaches the best
score for NIH and MURA and the best overall performance by 5.6 AUF and 2.2
AUA compared to the next-best method.

The performance evolution over time for some of the best methods on NIH
is shown in Fig. 2(a). All methods benefit from incorporating unlabeled sam-
ples, with our method improving fastest. The only exception is AdaODD, whose
optimal hyperparameters from the grid search assign low importance to the un-
labeled NIH data.

3.3 Ablations

Hyperparameter sensitivity From the grid search conducted on Plane:Rest,
we find CSO to be robust to its main hyperparameters β and γ: all combinations
with γ ∈ [1, 3, 5] and β ∈ [1/100, 1/300, 1/500] achieve between 92.6 and 93.2
AUA.

Contamination ratio We probe the effectiveness of CSO compared to the three
best baselines under varying contamination ratios π while keeping the number
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Fig. 2. Ablation curves. In (a), we show how the FPR@95 evolves over time for the
best methods on NIH. Our method achieves the best results, already after one iteration.
In (b), we compare methods by AUF under varying contamination ratios on NIH. Our
method consistently outperforms the baselines at different contamination levels.

Table 2. Ablation study on CIFAR10. (left) U-OOD performance in AUC over one
run as the methods are deterministic. MkNN outperforms the other U-OOD scoring
functions. (right) Comparing few-shot OOD performance. We report the mean AUC
over five runs. n-shot refers to using n ground-truth OOD samples. The confidence
scaling is important to achieve the best results.

AUC

kNN 81.7
MahaAD 86.0
MkNN (ours) 87.6

5-shot AUC 10-shot AUC

kNN 75.6 79.8
MDiff 84.7 89.9
s−Maha (ours) 91.2 91.9
s−MkNN (ours) 91.8 92.7

of OOD samples per step fixed at ten in Fig. 2(b). As expected, all iterative
methods benefit from having a higher fraction of unlabeled OOD samples in the
test set. Nonetheless, CSO achieves the best AUF for all contamination levels.

Scoring function We ablate our design choices by showing that (1) MkNN out-
performs both kNN and MahaAD for U-OOD detection and (2) s− outperforms
unscaled scoring functions on few-shot OOD. To do so, we run experiments with
our method on the standard one-class CIFAR10 benchmark.

From Tab. 2(left), MkNN outperforms the kNN scoring by 5.9 AUC and
MahaAD by 1.6 AUC, showcasing its practical usefulness over top-performing U-
OOD detectors [2]. Tab. 2(right) shows that equipping MDiff with our confidence
scaling, which we label as s−Maha, already improves few-shot results. We improve
the results by a further 0.6 and 0.8 AUC using MkNN. These results on natural
images also confirm the usefulness of our method beyond medical settings.
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4 Conclusion

We introduced the setting of IDE for U-OOD detection, which reflects the it-
erative process of real-world model deployment, along with new metrics and
benchmarks for the task. Furthermore, we presented CSO, a novel method for
IDE that gradually transforms the base U-OOD detector into a binary classi-
fier. In doing so, we additionally introduced an OOD scoring function that uses
the Mahalanobis distance to compute a nearest-neighbors score, and a few-shot
OOD detector that takes into account the confidence of the distributions in-
volved. Extensive experiments showed that our simple approach outperforms
methods from several related fields.
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