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Abstract. In recent years, multimodal emotion recognition has gradu-
ally become a research hotspot. Although existing methods have achieved
significant results by integrating information from different modalities, ir-
relevant or conflicting emotional information across modalities often lim-
its performance improvement. Inspired by Mamba’s ability to effectively
filter irrelevant information and model long-range dependencies with lin-
ear complexity, we propose a new paradigm for EEG-guided adaptive
multimodal emotion recognition with Mamba. This paradigm effectively
addresses the interference caused by cross-modal information conflicts,
enhancing the performance of multimodal emotion recognition. Firstly,
to alleviate the interference caused by conflicts between different modal-
ities, we design a multi-scale EEG-guided conflict suppression module.
Guided by multi-scale EEG features, this module uses a selective cross
state space model to suppress irrelevant information and conflicts in eye
movement features, thereby obtaining enhanced eye movement features.
Secondly, to deeply integrate the complementary features between the
EEG modality and the enhanced eye movement modality, we propose a
novel cross-modal fusion mechanism, consisting of Mutual-Cross-Mamba
and Merge-Mamba, which effectively captures long-range dependencies
in the fused features, thereby enhancing the integration and utilization
of cross-modal information. Experimental results on the SEED, SEED-
IV, and SEED-V datasets demonstrate that our method significantly
surpasses current state-of-the-art methods.

Keywords: EEG - Eye Movement - Multimodal Emotion Recognition -
Mamba.

1 Introduction

Multimodal emotion recognition (MER) has gained attention for its ability to
decode complex human emotions [9]. By integrating physiological signals and
behavioral data, multimodal methods improve emotion recognition accuracy.
Electroencephalography (EEG) captures dynamic changes linked to emotional
states, making it a key modality [12,29]. Eye movement data offers valuable
behavioral and cognitive cues, especially in response to external stimuli [4, 19,
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28]. Combining EEG with eye movement data provides both neurological and
behavioral insights, leading to a more comprehensive understanding of emotional
states [5,6,22].

In recent years, with the continuous advancement of multimodal emotion
recognition research, many methods have been proposed that integrate informa-
tion from different modalities and explore their complementarity and individual
characteristics to achieve more accurate emotion recognition [1,25,26]. For exam-
ple, Fu et al. [5] designed a multimodal feature fusion neural network to capture
complementary eye movement and EEG information, while Wang et al. [23] ap-
plied an attention mechanism to integrate EEG and eye movement signals for
emotion recognition. However, these methods often fail to fully account for ir-
relevant or conflicting emotional information between modalities. Additionally,
using attention mechanisms for cross-modal fusion significantly increases com-
putational complexity.

To address the aforementioned issues, this paper proposes a Mamba-based
adaptive EEG-guided multimodal emotion recognition model that effectively
suppresses emotion-irrelevant interference and conflicting information in eye
movement signals, thereby enhancing the performance of multimodal emotion
recognition. The main contributions of this work are as follows:

1. We propose an adaptive EEG-guided multimodal emotion recognition model
based on Mamba, which effectively mitigates interference from cross-modal
conflicts and enhances recognition accuracy. To the best of our knowledge,
this is the first study to apply the Mamba model to resolve cross-modal
conflicts in emotion recognition.

2. We designed a multi-scale EEG-guided conflict suppression module, which
learns to suppress irrelevant information and conflicts in the eye movement
features under the guidance of multi-scale EEG features, thereby enhancing
the eye movement features.

3. We propose a novel cross-modal fusion mechanism consisting of Mutual-
Cross-Mamba and Merge-Mamba, which aims to realize the deep interaction
of multimodal features and effectively capture the remote dependencies in
the fused features.

2 Method

2.1 Preliminaries

The state-space model (SSM) [8] consists of a state equation describing the
system’s internal dynamics and an observation equation linking the system state
to the observed values. For an input z(t) € R and a hidden state y(t) € R, the
system is represented by a linear ordinary differential equation (ODE) as follows:

B (t) = Ah(t) + Bx(t), y(t) = Ch(t). (1)

Here, A € RY*N jis the state matrix, B € RY¥*! is the input matrix, and
C € R is the output matrix. Mamba integrates continuous systems with
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Fig. 1. Our framework consists of three modules: modality embedding, multi-scale
EEG-guided conflict suppression, and cross-modal fusion. The modality embedding
module utilizes Bi-Mamba to extract unified modality features from EEG and eye
movement data. The multi-scale EEG-guided conflict suppression module extracts
multi-scale EEG features using two Mamba blocks and uses these features to guide the
Selective Cross-SSM in generating enhanced eye movement feature representations.
The cross-modal fusion module integrates multimodal information through Mutual-
Cross-Mamba and Merge-Mamba, and outputs the final emotion classification result
via a fully connected layer.

deep learning algorithms by applying zero-order hold (ZOH) [20] to transform
the continuous parameters A and B into their discrete counterparts A and B,
incorporating the time scaling parameter A. The conversion formula is as follows:

A =exp(AA), B=(AA) (exp(AA) 1) - AB. (2)

In practice, following the approach of [7], we approximate B using the first-
order Taylor series as follows:
B = (4 —1)A"'B~ (AA)(AA)'AB = AB. (3)
This approach converts the continuous ODE into a discrete form. The ex-
pression is as follows:

ht = Xht,1 +§l’t, Yt = Cht (4)

Building on the aforementioned discrete state-space equations, mamba in-
troduces data dependencies into the model parameters, enabling it to selectively
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propagate or forget information based on sequential inputs. Additionally, a paral-
lel scanning algorithm is employed to accelerate the equation solving process [7].

2.2 Modality Embedding

Given the raw EEG signal U,c, and eye movement Uy, we extract EEG features
Xeeg € R™*% and eye movement features Xeye € R™* %2 ysing the method from
[11], where n is the number of samples, and d;, d are the feature dimensions. To
unify the feature representations for each modality, we introduce two Bi-Mamba
blocks and initialize low-dimensional token sequences S, Sg. € RT*4 | where
T is the sequence length and d is the token feature dimension. The EEG and
eye movement features are then embedded into their respective tokens via the

Bi-Mamba blocks:

S’eleg = Egeg (concat (S’Seg,Xeeg) ’913259) e RTxd, (5)
S;ye = Egye (concat (Sgye, Xeye) ’0E2y6> c RTxd, (6)

Here, Egeg and Egye denote the Bi-Mamba layers with parameters HEgeg and
GEgye, respectively. The operation concat(-) represents concatenation. Bi-Mamba
embeds the modality features into tokens, generating the unified feature repre-

sentations Sg,, and SJ .

2.3 Multi-Scale EEG-Guided Conflict Suppression

After achieving a unified representation transformation for the features of each
modality, our goal is to filter out irrelevant or conflicting interference information
between modalities. Specifically, we define the Séeg as low-scale EEG features
and further extract medium-scale and high-scale EEG features (i.e., Sezeg and
Sg’eg) by introducing two Mamba layers:

Stey = Bley (Sizg Op;,, ) € BT, (7)
where i € {2, 3} represents EEG features at different scales, with Eéeg and Op;
denoting the i-th Mamba layer and its parameters.

Next, we initialize the enhanced eye movement feature Sgye, € RT*4 and up-
date it by calculating the relationship between EEG and eye movement features
using selective cross-state-space computation. The process is as follows:

Acye, Beye = exp(AeyeAcye), AcyeBeyes (8)
W eye = Acyeh' Cye + Beyes' eyes 9)
8 eyer = Clegh'cyes (10)
Seyer = [sleye,,szeye,, ....,sTeye,] . (11)
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Fig. 2. Cross-modality fusion. (a) Mutual-Cross-Mamba and (b) Merge-Mamba

Here, Cccg is computed from the EEG features at different scales, and the en-

hanced eye movement modality feature S7

zyer Can be updated as follows:

1

Siye = Sgye’ + Seye’a (12)
where j € {1,2,3} and Sgye, € RTXd represent the j-th selective cross-state-
space model and its corresponding output.

2.4 Cross-Modal Fusion

The proposed cross-modal fusion mechanism consists of the Mutual-Cross-Mamba,
(MutCroMB) block and the Merge-Mamba (MerMB) block. MutCroMB en-
hances inter-modal interactions by applying the SSM in both directions across
modalities. MerMB uses a selective scanning mechanism to fuse interacting fea-
tures, producing the final fusion result. The fusion process is described below:
§eeg7 §eye/ = MutCroMB (Sgeg, Sg’ye )

~ (13)
Sfusion = MerMB (Seeg7 Seye’)~

Specifically, MutCroMB enhances modal feature interaction via a cross-multiplication
mechanism. As shown in Fig. 2 (a), the two input features are processed by con-
volution and then passed into the cross SSM. According to Eq. (4), the matrix
C decodes information from the hidden state h; to generate the output y;.

In MutCroMB, features from both modalities interact to generate cross-
modal enhanced features. To capture long-range dependencies, the MerMB mod-
ule integrates MutCroMB’s output. As shown in Fig. 2 (b), Seeg and Seyer are
first processed through linear layers and convolutional layers, and then enter the
Merge SSM block. To ensure comprehensive information capture, we perform a
reverse scan on the merged sequence SMerge, producing Stnverse, Which under-
goes further processing to yield SMerge and Slnverse Finally, the inverted output
is reversed and subsequently added to the merged sequence. This process can be
represented as:
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§eeg, §eye’ = Conv(Linear(,SA’eeg))7 Conv(Linear( Aeye/))7 14

(14)
(15)
Stuverse = Inverse(Syierge), (16)
(17)
(18)

SMerge = Concat(seeg; Seye’)7

SMergm S’Inverse = SSM(SMerge)7 SSM(SInverse)7 17

Sfusion = SMerge + Inverse(s’lnverse)- 18

Through this process, we obtain the deeply fused feature Stusion, which is then
passed through a fully connected layer and a softmax function for classification.
The model is optimized by minimizing the cross-entropy loss:

1 M
L= N sz:lyic log (Pic) ) (19)

i

where M is the total number of categories, y;. is a binary indicator (0 or 1) for
sample i belonging to category ¢, and p;. is the predicted probability of sample
i belonging to category c.

3 Experiment

3.1 Datasets

We conducted experiments on three datasets: SEED [16], SEED-IV [27], and
SEED-V [14]. The SEED dataset includes data from 12 Chinese subjects watch-
ing 15 clips covering happy, neutral, and sad emotions. The SEED-IV contains
data from 15 subjects, involving four emotions (happy, sad, fear, and neutral).
The SEED-V includes data from 16 subjects, covering five emotions (happy, sad,
fear, neutral, and disgust).

3.2 Implementation Details

We followed the training/testing protocols from the original papers for each
dataset, using the same data splits as previous studies [14, 16, 27]. The model
was trained for 100 epochs with a batch size of 16, using the Adam optimizer
and a learning rate of le=*. A dropout layer with a rate of 0.5 was added to
prevent overfitting. All experiments were performed on an NVIDIA RTX 3090
with CUDA 11.8, using Python 3.10.13 and PyTorch 2.1.1.

3.3 Experiment Results

We evaluated the proposed method on the SEED, SEED-IV, and SEED-V
datasets and conducted a comparative analysis with other multimodal methods.
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Table 1. Comparison of the average accuracy and standard deviation (%) of various
multimodal methods across different datasets. (Bold indicates the best accuracy.)

Methods Modality SEED SEED-IV SEED-V
Fuzzy Intergral [15,18] EEG and EM 87.60419.9 73.60£16.7 73.204£8.70
BDAE [17,27] EEG and EM 91.0148.91 85.114£11.79 79.70+£4.76
DCCA [15] EEG and EM 94.6046.12 87.5049.20 85.3045.6
DCCA-FCP [24] EEG and EM 95.0846.42 - 84.5145.11
CAN |[21] EEG and EM 94.0346.62 87.7149.74 -
ECO-FET [10] EEG and EM 93.694:8.22 87.7649.19 77.13+4.16
ATAM [13] EEG and EM 94.8047.50 91.60410.0 -

Ours EEG and EM 96.82+5.20 94.93+6.12 86.95+5.89
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Fig. 3. Confusion matrix (a) SEED, (b) SEED-IV and (c) SEED-V.

The experimental results in Table 1 show that, on the SEED dataset, the aver-
age recognition accuracy of our model reaches 96.82%, an improvement of 1.74%
over the best-performing model; on the SEED-IV dataset, the average recogni-
tion accuracy is 94.93%, an increase of 3.33%; and on the SEED-V dataset, the
average recognition accuracy is 86.95%, surpassing the best model by 1.65%.
These results thoroughly demonstrate the model’s outstanding performance in
emotion recognition tasks.

Fig. 3 presents the confusion matrices of our proposed method on the SEED,
SEED-IV, and SEED-V datasets. It is clear that on the SEED dataset neutral
and positive emotions are easy to distinguish. On the SEED-IV, neutral and fear
emotions are easier to recognise than sadness and happiness. On the SEED-V,
fear is the easiest emotion to recognise, while disgust is the most difficult.

3.4 Ablation Study and Analysis

Effects of different modalities and dominant modalities. We conducted
ablation experiments to assess the impact of different modalities. Table 2 presents
results on the SEED, SEED-IV, and SEED-V datasets, comparing EEG, eye
movement, and both modalities, with each signal as the dominant modality. On
SEED, the model’s accuracy with only eye movement signals is 83.18%, while
using eye movement as the dominant modality improves accuracy to 87.34%.
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Table 2. Effects of different modalities and dominant modalities (mean + std. dev

(%))
Modality SEED SEED-IV SEED-V
EM 83.18+7.05 80.35+7.23 71.68+8.11
EEG 94.21+5.66 91.29+6.03 83.62+6.41
EEG+EM (EM Dominant) 87.34+6.89 83.68+6.47 75.39+7.15
EEG+EM (EEG Dominant) 96.82+5.20 94.93+6.12 86.95+5.89

Table 3. Effects of different compo-

Table 4. Perf is f
nents (mean + std. dev (%).) able erformance comparison o

mamba and transformer.

Methods SEED SEED-IV. SEED-V Methods TransformerMER MambaMER
w/o MECS 86.76+7.38 85.45+7.96 78.69+5.63 Accuracy 96.21% 96.82%
w/o CMF 91.52+6.59 89.03+6.28 81.724+7.04 FLOPs 1.58B 0.86B

w/o ME 92.18+6.93 90.52+7.21 83.26+7.16

Parameters 86.72M 28.56M
MambaMER 96.82+5.20 94.934+6.12 86.954+5.89

However, eye movement as the dominant modality performs worse than EEG
alone (94.21%) or EEG as the dominant modality (96.82%). This indicates that
EEG, with its stronger emotional expression, more effectively guides eye move-
ment signals, a conclusion consistent across the other datasets.

Effects of Different Components. To evaluate the contributions of each com-
ponent in the proposed model, we conducted ablation experiments on the SEED,
SEED-IV, and SEED-V datasets, with the results presented in Table 3. Remov-
ing the EEG-guided conflict suppression (MECS) module led to a significant drop
in performance, highlighting its crucial role in capturing cross-modal relation-
ships. Similarly, removing the cross-modal fusion (CMF) module also resulted in
a performance decline, further emphasizing its importance in integrating comple-
mentary information and enhancing inter-modal interactions. Additionally, re-
moving the modality embedding (ME) module also reduced performance. These
results thoroughly demonstrate the key role of the MECS, CMF, and ME mod-
ules in enhancing the model’s expressive power and robustness.

Performance Comparison of Mamba and Transformer. By replacing
Mamba with Transformer [2,3] in the model, the TransformerMER model was
constructed. We compared the accuracy, FLOPs, and parameters of MambaMER
and the deformation model on the SEED dataset to validate the effectiveness and
superiority of the proposed MambaMER, model. Table 4 summarizes the experi-
mental results of the two methods. The results indicate that MambaMER slightly
outperforms the deformation model in terms of accuracy, while demonstrating
a significant advantage in FLOPs and parameters. Therefore, the experimental
results provide strong evidence for the feasibility of the MambaMER model and
its advantages over TransformerMER.
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4 Conclusion and Discussion

In this paper, we propose an adaptive EEG-guided multimodal emotion recog-
nition paradigm based on Mamba. To mitigate interference caused by conflicts
between different modalities, we design a multi-scale EEG-guided conflict sup-
pression module. Guided by EEG features at different scales, a selective cross-
state space model extracts conflict-independent representations from eye move-
ment features, effectively filtering out irrelevant or conflicting information. Ad-
ditionally, we introduce a novel cross-modal fusion mechanism to enhance fea-
ture interaction and capture long-range dependencies. Experiments on SEED,
SEED-IV, and SEED-V datasets show that our method outperforms state-of-the-
art approaches. In the future, we will focus on addressing the issue of missing
modalities in cross-modal fusion and explore more adaptive mechanisms to ef-
fectively compensate for the impact of information loss on emotion recognition
performance.
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