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Abstract. Automated pathological image classification remains a crit-
ical challenge, particularly due to the scarcity of annotated data and
the complexity of disease-specific features. Existing methods, such as
CLIP-based prompt tuning, struggle with limited few-shot learning and
poor integration of multimodal information in medical contexts. In this
study, we introduce PATE (Prompt-based Adaptation for Text-Image
Embedding), a novel framework to enhance CLIP’s adaptability for few-
shot pathological image classification. Our approach incorporates deep
learnable prompts in both vision and language encoders, enabling effec-
tive use of visual and textual information. We also propose a dynamic
bridging function for bidirectional information exchange and a Gaussian-
weighted Prompt Integration (GPI) strategy to adjust prompt contri-
butions across epochs, enhancing generalization and reducing overfit-
ting. Extensive experiments on the PatchGastric dataset, which includes
179,285 histopathological patches across three gastric adenocarcinoma
subtypes, demonstrate that PATE consistently outperforms state-of-the-
art methods, achieving superior performance in both low-data and full-
data settings. Ablation studies validate the effectiveness of each compo-
nent, marking a significant advancement in few-shot medical image anal-
ysis, particularly in rare disease diagnosis and digital pathology work-
flows.
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1 Introduction
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Fig. 1. Comparison of PATE with the state-of-the-art method. (a) The existing SOTA
method CITE only applies prompt tuning to the vision modality of CLIP. (b) PATE
introduces hierarchical multimodal prompts and a vision-language bridge.

The rapid advancement of deep learning has significantly impacted medical
imaging, especially in pathological image analysis. The automated analysis of
pathology Whole Slide Images (WSIs) [4, 16] is critical in cancer diagnosis and
predicting treatment response. However, analyzing WSIs is challenging due to
their gigapixel resolution [11], which makes them unsuitable for direct input
into deep learning models. To address this, a common approach involves divid-
ing WSIs into non-overlapping small patches for processing [20]. Moreover, the
scarcity of annotated data [17, 30, 13, 38], particularly for rare diseases, limits the
performance of traditional deep learning methods. In response, few-shot weakly
supervised learning for WSIs classification (FSWC) [22] has emerged. This ap-
proach enables models to learn from limited labeled data, with a common and
effective method using pre-trained [6] models combined with parameter-efficient
fine-tuning techniques [10, 25]. In the context of FSWC, this approach enables
effective AI-assisted diagnosis of WSIs [7] even with limited annotated data,
ensuring robust performance in data-scarce scenarios [26, 12, 27].

A promising direction for improving model performance is multimodal learn-
ing [24, 31], which integrates visual and textual data to enhance understanding
and generalization. CLIP (Contrastive Language-Image Pretraining) [23] aligns
images and text in a shared semantic space, enabling zero-shot learning [32].
However, applying CLIP to medical imaging, such as pathological classification,
is challenging due to the fine-grained, domain-specific nature of medical im-
ages [3, 18] and the need for precise alignment with clinical texts [21]. To address
this, Prompt Tuning has emerged as an efficient adaptation method, allowing
models like CLIP to adapt to new tasks with minimal computational cost [8]
while preserving generalization and reducing overfitting [5, 10]. As shown in Fig-
ure 1(a), methods like CITE [33] for pathological image classification introduce
learnable prompts only at the image encoder stage. However, this approach fails
to exploit the intricate interactions between visual and textual modalities. By
optimizing the image encoder independently, it misses the potential of leverag-
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ing multimodal relationships, which are critical for improving diagnostic perfor-
mance in medical contexts [2].

In this study, we propose Prompt-based Adaptation for Text-Image Embedding
(PATE), see Figure 1(b), a novel framework for FSWC. PATE incorporates deep
prompts across multiple transformer layers in vision and language encoders. This
dual-modal approach enables the model to learn from visual prompts, captur-
ing spatial and appearance features, and textual prompts, learning contextual
and semantic representations, thus improving multimodal feature extraction. By
integrating these prompts at different depths, PATE enhances low-level and high-
level feature learning, promoting better multimodal representation for patholog-
ical image analysis.

Inspired by CoOp [36] and CoCoOp [35], PATE introduces learnable context
to model specific categories, which is particularly beneficial for fine-grained clas-
sification tasks. To strengthen the synergy between vision and language, PATE
includes a bridging function that conditions visual prompts on textual prompts
and vice versa, ensuring bidirectional information exchange. This mechanism
leverages the strengths of both modalities, enhancing multimodal adaptation.

We propose a Gaussian-weighted Prompt Integration (GPI) strategy, which
adaptively integrates prompts across training epochs using Gaussian-distributed
weights to improve prompt robustness and generalization. This prioritizes prompts
from intermediate epochs, which are more task-relevant while reducing the influ-
ence of less relevant initial and final prompts, enhancing performance in few-shot
learning and cross-domain adaptation [34]. In summary, the main contributions
of this work include:

1. Hierarchical Multimodal Prompting Strategy(HMPS): We integrate
deep multi-layer prompts into vision and language encoders, enhancing structural-
semantic feature extraction and improving multimodal representation learn-
ing under data scarcity through hierarchical cross-modal alignment.

2. Bridging Function(BF): We propose a cross-modal interaction mecha-
nism that explicitly establishes bidirectional conditioning between visual and
textual prompts. This mechanism facilitates synergistic information flow to
enhance vision-language representation alignment and improve classification
accuracy.

3. Gaussian-weighted Prompt Integration(GPI): We introduce a dy-
namic prompt integration strategy that employs Gaussian-weighted atten-
tion to prioritize prompts from intermediate epochs. This strategy signifi-
cantly enhances few-shot learning and cross-domain adaptation in medical
imaging tasks.

2 Methodology

Our approach leverages prompt tuning on the pre-trained CLIP [23] model to
improve its performance on pathological image classification tasks. As shown in
Figure 2(a), we introduce joint prompt tuning for both the textual and visual
encoders by adding trainable tokens as prompts within the encoder layers of
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Fig. 2. Overview of PATE. (a) PATE framework with deep prompting and a bridging
function. (b) Text input construction by concatenating learnable context tokens with
labels. (c) GPI for adaptive prompt aggregation across epochs.

both branches and injecting these context prompts at different depths within
the transformer blocks to capture hierarchical contextual features. Additionally,
a bridging function is proposed to model the interactions between image and
text representations, enhancing mutual information and improving multimodal
learning during training. Only the context prompts and bridging function pa-
rameters are updated during fine-tuning, while the rest of the model remains
frozen. In the following sections, we first revisit CLIP, followed by a detailed
description of the design of our approach.

2.1 Preliminaries

In this section, we revisit CLIP’s structure and its application to Whole Slide
Imaging (WSI) pathology classification.
Vision and Text Encoding. Given a pathology image I ∈ RH×W×3, the
vision encoder in CLIP uses a Vision Transformer (ViT) model [28], where the
image is divided into M fixed-size patches, each projected into embeddings E0 ∈
RM×dv . These patch embeddings are processed through K transformer layers,
each incorporating a class token ci to integrate features from the entire image.
The final class token cK is projected into a shared latent space, yielding the
image feature xv = ImageProj(cK) ∈ Rdv . For the text description, the words are
tokenized and projected into word embeddings W0 = [w1

0, w
2
0, . . . , w

N
0 ] ∈ RN×dl ,
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which are processed by a separate text transformer model, generating the final
text representation zc = TextProj(wK) ∈ Rdl .
Image-Text Feature Matching and Classification. For pathology image
classification, the image feature xv and the text feature zc are compared by
calculating their cosine similarity. Given C classes, the prediction process is as
follows:

p(ŷ = c|I) =
exp

(
sim(xv,zc)

τ

)
∑C

c′=1 exp
(

sim(xv,zc′ )
τ

) (1)

where sim(·, ·) denotes cosine similarity and τ is a temperature scaling param-
eter that adjusts the magnitude of the similarity [9]. By maximizing the cosine
similarity between image features and class text features, CLIP [23] can assign
pathology images to the correct category.

2.2 Deep Prompting and Bridging Function

To optimize the alignment between the vision and language branches of CLIP, we
introduce deep prompting in both modalities by incorporating learnable context
tokens at multiple layers of the respective encoders. The prompts are initialized
using a truncated normal distribution (µ = 0, σ = 0.02), consistent with CLIP’s
original implementation. This approach enhances the model’s ability to progres-
sively adapt the representations to downstream tasks by learning rich contextual
information from each stage of the transformer blocks.
Language Prompting. For the text encoder, we introduce a set of b learn-
able prompt tokens {Pi ∈ Rdl}bi=1, where b denotes the number of prompt
tokens. These tokens are concatenated with the initial word embeddings W0 =
[w1, w2, . . . , wN ] ∈ RN×dl . These tokens are injected into the transformer lay-
ers, where at each layer i, the prompt tokens are concatenated with the word
embeddings Wi and processed through the corresponding language transformer
block Li:

[Pi,Wi] = Li([Pi−1,Wi−1]) i = 1, 2, . . . , J (2)

where J represents the injection depth, indicating the maximum layer index for
prompt token integration. After the J-th layer, the remaining layers continue
processing the previous prompts, leading to the final text representation z:

[Pj ,Wj ] = Lj([Pj−1,Wj−1]) j = J + 1, . . . ,K (3)

z = TextProj(wN
K) (4)

In particular, as shown in Figure 2(b), the text input for the word embedding
is formed by concatenating learnable context tokens with the category labels.
These learnable context tokens belong to the dynamic prompt and are initialized
with descriptions such as ’a photo of a poorly differentiated adenocarcinoma.’
Vision Prompting. Similarly, in the vision branch, we introduce b learnable
prompt tokens {P̃i ∈ Rdv}bi=1 alongside the initial patch embeddings of the
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image. These context tokens are inserted into the image encoder’s transformer
layers. At each layer i, the prompt tokens are concatenated with the image patch
embeddings Ei−1 and processed by the transformer block Vi:

[ci, Ei, P̃i] = Vi([ci−1, Ei−1, ˜Pi−1]) i = 1, 2, . . . , J (5)

At deeper layers, the tokens continue to propagate, and the final image repre-
sentation x is obtained:

[ci, Ei] = Vi([ci−1, Ei−1]), J + 1 ≤ i ≤ K. (6)

x = ImageProj(cK) (7)

Bridging Function. To align the vision and language branches in the model, we
introduce a bridging function F (·) that projects the language prompts into the
vision prompt space. This ensures effective interaction and synchronized learning
between the two modalities. Specifically, the bridging function applies a linear
layer to the language prompts Pk ∈ Rdl , mapping them to the vision prompt
space P̃k ∈ Rdv , where dl and dv are the respective embedding dimensions. At
each layer i of the vision encoder, the transformed language prompt Fi−1(Pi−1)
is concatenated with the previous vision embeddings and processed through the
transformer block Vi:

P̃i = Fi(Pi) i = 1, 2, . . . , J (8)

2.3 Gaussian-weighted Prompt Integration

As illustrated in Figure 2(c), we introduce "Gaussian-weighted Prompt Integra-
tion (GPI)" to integrate prompt tokens across training epochs using Gaussian-
distributed weights. The weights are designed to emphasize intermediate epochs
more heavily, as initial and final prompts receive relatively lower weights due to
their reduced relevance for task-specific representation. The integrated prompt
Pt

′ is weighted by a Gaussian distribution wt ∼ N (µ, σ2), where t denotes the
t− th epoch, µ and σ2 are hyper-parameters and

∑E
t=1 wt = 1:

Pt
′ =

E∑
t=1

wt · Pt (9)

3 Experiments

Dataset.We use the PatchGastric [29] dataset, which contains a total of 262,777
patches, each of size 300x300 pixels, extracted from 991 whole slide images
(WSIs) of gastric adenocarcinoma biopsy specimens, captured at magnifications
of ×20. The dataset includes nine different gastric adenocarcinoma subtypes,
from which we select three major subtypes—well-differentiated tubular adeno-
carcinoma, moderately differentiated tubular adenocarcinoma, and poorly dif-
ferentiated adenocarcinoma—to form a three-class grading classification task.



PATE: Prompt-based Adaptation for Text-Image Embedding 7

This subset includes 179,285 patches from 693 WSIs, with the dataset split into
training and validation sets in a 2:8 ratio.
Implementation Details. We experiment with a few-shot learning setup to
simulate scenarios with limited labeled data, selecting 1, 2, 4, 8, or 16 WSIs
per class for training. We use a 16-shot setting for all experiments, where 16
samples are randomly chosen for each class to form the training set. We employ
the pre-trained ViT-B/16 [23] CLIP model as the backbone for prompt tuning,
where the text encoder embedding dimension is set to dl = 512 and the vision
encoder embedding dimension is dv = 768. For PATE, the prompt depth J is
set to 3 for few-shot settings with 1 or 2 WSIs, 5 for few-shot settings with 4
or 8 WSIs, and 9 for few-shot settings with 16 WSIs or the full dataset. We
use 2 learnable prompt tokens for both modalities at each injected layer. The
network is trained using the AdamW optimizer [19] with a learning rate of 0.0001
for 150 epochs and a batch size of 16. Training is conducted on eight NVIDIA
RTX 3090 GPUs. The classification performance is evaluated using accuracy,
averaged over three independent runs to ensure reliability. The text prompts
follow the template “a photo of a <category>,” while all other model parameters
are randomly initialized from a normal distribution.

4 Results

Fig. 3. Comparison of accuracy on the PatchGastric 3-category classification task.

Comparison with Baseline Models. We evaluate the performance of our
proposed model, PATE, against several related baseline methods, including tra-
ditional fine-tuning [1], Linear Probe [15], VPT [14], and CITE [33], on the
PatchGastric [29] dataset. The results in Figure 3 demonstrate that PATE out-
performs all baselines across various data scales, particularly in few-shot settings.
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In the 1-shot scenario, PATE achieves 59.3% accuracy, surpassing CITE (59.1%),
Finetune (39.2%), Linear Probe (47.7%), and VPT (47.9%). As the number of
training samples increases, PATE’s advantage grows, reaching 71.2% accuracy
in the 16-shot scenario, outperforming CITE (65.7%) and other baselines. This
trend holds for 4-shot and 8-shot settings, where PATE improves more signif-
icantly. PATE’s ability to leverage both visual and textual information helps
it generalize better, especially with more data. When using all available data,
PATE achieves 73.6%, outperforming CITE (68.5%), Finetune (66.3%), Linear
Probe (65.4%), and VPT (64.7%), highlighting its superior performance.
Ablation Study. We conduct an ablation study to evaluate the contributions
of various components in our proposed method. The factors considered include
Learnable Contexts (LC), Visual Prompts (VP), Textual Prompts (TP), bridg-
ing Function (CF), and Gaussian-weighted Prompt Integration (GPI). Table 1
summarizes the performance under different few-shot learning settings (1, 2, 4, 8,
16 shots) on the PatchGastric [29] dataset. To simulate real-world limited labeled
data, we evaluate the model using 1-shot and 2-shot settings. The baseline accu-
racy, without any additional components, is 39.1% in the 1-shot and 39.0% in the
2-shot settings. Introducing Learnable Contexts (LC) alone results in a notice-
able improvement, with accuracy rising to 47.9% in the 1-shot setting and 49.6%
in the 2-shot setting. The addition of Visual Prompts (VP) further enhances per-
formance, pushing the accuracy to 50.3% in the 1-shot and 53.8% in the 2-shot
settings. When both VP and Textual Prompts (TP) are incorporated, we observe
a significant performance boost, with accuracy reaching 58.7% in the 1-shot and
59.3% in the 2-shot settings. This demonstrates the substantial synergy between
visual and textual cues in improving the model’s classification ability. Next,
the bridging function (BF), which enables better interaction between the visual
and textual prompts, refines the model even further, achieving 59.3% in the 1-
shot and 59.4% in the 2-shot settings. Notably, the Gaussian-weighted Prompt
Integration (GPI) strategy demonstrates consistent improvements across all few-
shot settings, particularly showing a 2.3% accuracy gain in the 16-shot scenario,
validating its effectiveness in mitigating overfitting through mid-epoch prompt
emphasis. These results highlight the significant impact of VP and TP in im-
proving model performance, with CF and GPI providing additional refinement,
demonstrating the effectiveness of each component in enhancing generalization
with limited labeled data.

Table 1. Ablation study of PATE.

LC VP TP BF GPI 1 2 4 8 16 All
39.1 39.0 44.1 51.7 51.7 66.0

✓ 47.9 49.6 52.3 56.4 59.2 66.7
✓ ✓ 50.3 53.8 57.9 59.2 63.1 68.4
✓ ✓ ✓ 58.7 59.3 60.4 63.6 66.1 69.5
✓ ✓ ✓ ✓ 59.3 59.4 60.9 64.2 68.9 70.3
✓ ✓ ✓ ✓ ✓ 59.3 59.8 61.2 65.7 71.2 73.6
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5 Conclusion

We propose PATE, a novel framework for few-shot pathological image classifica-
tion that leverages multimodal prompt learning. By incorporating deep learnable
prompts into both vision and language encoders, PATE improves multimodal fea-
ture extraction and enhances model performance in data-scarce scenarios. The
dynamic bridging function facilitates bidirectional information exchange between
the modalities, while Gaussian-weighted Prompt Integration (GPI) boosts gen-
eralization and reduces overfitting. Experiments on the PatchGastric [29] dataset
show that PATE outperforms state-of-the-art methods, significantly improving
rare disease detection and digital pathology. Future work will extend PATE to
other medical imaging tasks and explore its broader applicability [37].
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