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Abstract. Pathologic complete response (pCR) prediction for breast
cancer patients undergoing neoadjuvant chemotherapy (NAC) is crucial
for optimizing treatment strategies. Nowadays, an increasing number of
studies focus on predicting NAC response using preoperative imaging,
and with the advancement of deep learning, different modalities of imag-
ing and other clinical data can be effectively integrated to provide more
comprehensive information. However, existing deep learning methods pri-
marily focus on multimodal fusion or longitudinal modeling but often suf-
fer from inadequate feature focus and overlook specific treatment effects.
To address these limitations, we propose a novel multimodal-learning
framework LMF(Longitudinal MRI-Clinical Multimodal Fusion) that
enhances feature extraction and explicitly models treatment-induced im-
aging changes. Our method consists of two key components: (1) Molecul-
ar-Aware Deformable Attention (MADA), which integrates molecular
subtype information with MRI features and refines spatial represen-
tations via deformable cross-attention mechanism; and (2) Treatment-
Aware Longitudinal Modeling (TALM), which incorporates treatment
embeddings to capture NAC-driven feature variations. The model is
trained and evaluated on the ISPY-2 dataset, using pre- and post-NAC
DCE-MRI alongside clinical data. Experimental results demonstrate that
our approach outperforms existing methods, confirming that MADA ef-
fectively enhances feature extraction while TALM strengthens longitudi-
nal modeling. These findings highlight the potential of integrating mul-
timodal feature refinement with treatment-aware temporal modeling for
improved pCR prediction. Our code is available at https://github.com/
martin-bro/LMF.

Keywords: Multimodal Learning · Longitudinal Imaging Analysis · Ne-
oadjuvant Chemotherapy · Pathologic Complete Response Prediction

https://github.com/martin-bro/LMF
https://github.com/martin-bro/LMF


2 D. Ma et al.

1 Introduction

Neoadjuvant chemotherapy (NAC) improves surgical feasibility by shrinking tu-
mor size preoperatively and provides a window to assess breast cancer biol-
ogy [18]. Pathologic complete response (pCR) is a crucial NAC efficacy marker,
strongly correlated with survival, particularly in HER2-positive and triple-negat-
ive subtypes [2]. However, current pCR evaluation relies on postoperative pathol-
ogy, delaying treatment adjustments and limiting personalized strategies [20].
Early pCR prediction via preoperative imaging, such as DCE-MRI [17], offers
the potential to optimize treatment plans and reduce overtreatment. Traditional
machine learning methods depend on manual tumor delineation and handcrafted
feature extraction, limiting their flexibility [7,8]. In contrast, deep learning en-
ables high-dimensional feature extraction, surpassing handcrafted methods in
multimodal fusion and longitudinal modeling [10].

Despite their advantages, deep learning methods face several challenges. Two-
stage approaches (i.e., segmentation followed by handcrafted feature extraction)
require highly accurate tumor delineation [15], while non-segmentation-based
methods typically crop small regions around lesions during preprocessing [22,19].
However, the variable lesion sizes complicate optimal patch dimension selection.
Direct processing of MRI scans covering most of the complete unilateral breast
region leads to feature unfocused issues, necessitating more effective feature ag-
gregation mechanisms. Emerging evidence suggests MRI characteristics corre-
late with breast cancer molecular subtypes [23], motivating multimodal fusion
with clinical data. Although Du et al. [3] and Petersen et al. [16] proposed con-
trastive learning for image-tabular alignment, they focused on the entire image,
lacking a method for integrating key features of MRI. Xiong et al. [21] intro-
duced cross-attention for feature fusion, but their ablation studies revealed that
the primary accuracy gains came from the feature dimension reduction module
(CMLP) rather than the attention mechanism itself, suggesting cross-attention
alone may be insufficient for efficient MRI-clinical data interaction.

Longitudinal imaging analysis leverages tumor dynamics during neoad-
juvant chemotherapy (NAC) to enhance treatment response prediction. Re-
cent advances include 3D RP-Net for MRI contrastive learning [1] and Siamese
Multi-Task Networks (SMTN) for HER2-positive pCR prediction [13]. While
Gao et al. [4] proposed timepoint encodings, their late fusion strategy inade-
quately captures complex feature transitions across treatment phases. Methods
employing contrastive loss assumptions (e.g., Zhang et al. [22], Sun et al. [19])
posit greater imaging changes in pCR patients, but this hypothesis oversim-
plifies cases with subtle imaging distinctions. Furthermore, most existing ap-
proaches neglect explicit modeling of treatment-specific effects, potentially lim-
iting model sensitivity to treatment variations. Recent explorations in treatment-
effect modeling include Liu et al.’s treatment-aware diffusion for brain MRI [12]
and Gao et al.’s NAC mammography synthesis [5]. However, the high anatomical
variability in breast MRI constrains generative models’ capacity to predict NAC-
induced morphological changes, highlighting the need for alternative modeling
paradigms.
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To overcome these limitations, we propose a novel multimodal-learning fram-
ework LMF(Longitudinal MRI-Clinical Multimodal Fusion) for pCR prediction
with low annotation burden, which decouples the key steps of the breast cancer
pCR prediction task (information extraction and longitudinal modeling). Our
contributions are as follows.

1. We introduce Molecular-Aware Deformable Attention (MADA), a novel cro-
ss-attention mechanism, to integrate molecular subtype information with
MRI features, enhancing feature extraction.

2. We propose Treatment-Aware Longitudinal Modeling (TALM), an explicit
longitudinal modeling strategy, to incorporate treatment embeddings to cap-
ture changes induced by treatment, improving the prediction of pCR status
from longitudinal imaging data.

2 Methods

2.1 Overall Structure

This study aims to predict the pathological complete response (pCR) of breast
cancer patients undergoing neoadjuvant chemotherapy (NAC). The input data
includes dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI)
and clinical information. The model employs ResNet18-3D as the backbone for
feature extraction, which is pre-trained using a segmentation network trained on
a randomly split dataset (4:1) using pre-NAC MRI, and the annotations are from
a benchmark for breast tumor segmentation [6] achieving a Dice coefficient of
0.7893. Additionally, a phaseConv module is introduced to model signal enhance-
ment patterns between pre-contrast and Phase 3 images, enhancing the dynamic
representation of DCE-MRI. Patients for segmentation model validation are not
included in pCR prediction validation set.

Considering the weakly supervised nature of the dataset [9], where t0 rep-
resents the pre-NAC time point with only partial lesion annotations and t2
represents the post-NAC time point without precise lesion annotations, pseudo
masks generated from the pre-trained segmentation network are used during
training. Dice loss is applied to constrain the corresponding module, improving
the learning of lesion-related features. The overall framework of the method is
illustrated in Fig. 1, which consists of two key components: Molecular-Aware De-
formable Attention (MADA) for multimodal feature refinement and Treatment-
Aware Longitudinal Modeling (TALM) for treatment-sensitive longitudinal anal-
ysis.

2.2 Molecular-Aware Deformable Attention (MADA)

To address the issue of unfocused attention and redundant information when
extracting large-field MRI features using 3D CNN, we propose Molecular-Aware
Deformable Attention (MADA), which enhances MRI feature extraction through
image-tabular multimodal fusion.
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Fig. 1. Overall structure of our proposed model LMF. A. Our Model with 2 key com-
ponents: Molecular-Aware Deformable Attention (MADA) and Treatment-Aware Lon-
gitudinal Modeling (TALM). B. MQF in MADA and TFF in TALM facilitate feature
interaction between MRI, molecular, and treatment embeddings. C. DSF in MADA
dynamically samples key regions in MRI to extract enriched feature representations.
D. DFP in TALM models NAC-induced changes in MRI features.

Molecular-Aware Query Fusion We compute the interaction between molec-
ular information and MRI features via Cross Attention to enhance the biological
relevance of imaging features:

Qmultimodal = Q+ Softmax
(
QKT

√
C

)
V, (1)

where Query Q ∈ RB×Lq×C is computed from MRI feature maps FMRI ∈
RB×C×D×H×W via flattening and a linear projection. Key K ∈ RB×1×C and
Value V ∈ RB×1×C originate from molecular features Fmolecular ∈ RB×C , which
are encoded via a Tabular Encoder (MLP-like) from raw clinical tabular data.

Deformable Spatial Focusing We obtain the molecular-integrated Query
Qmultimodal as the input to Deformable Attention [24], while Key and Value are
mapped from MRI feature maps FMRI. We first randomly initialize sampling
points pi ∈ RBq×Lq×1×3 and input them into the Deformable Attention Layer
to obtain enhanced imaging features:

Fenhanced =

P∑
i=1

Softmax
(
QKT

√
C

)
i

· FMRI(pi +∆pi) = D(Q,K, V, p), (2)

where the offset ∆pi = WoffsetsQ is computed from a learnable offset prediction
network. In implementation, we set the number of attention heads nheads = 8 and
the number of sampling points per head npoints = 8 to enhance model capacity.
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We apply 3 iterative layers of Deformable Attention, where the output of
each layer serves as the input for the next, enabling the progressive optimization
of sampling locations. At the l-th layer, we directly use the enhanced imaging
features from the previous layer, F (l−1)

enhanced, as the new Query and compute the
current layer’s features:

F
(l)
enhanced = D(F

(l−1)
enhanced,K, V, p). (3)

Additionally, we update the feature representation using residual connections
and refine the sampling point locations:

p
(l)
i = sigmoid(p(l−1)

i +W
(l)
refF

(l)
enhanced). (4)

This strategy ensures that sampling points are iteratively optimized across dif-
ferent layers, allowing the final feature representation to focus more effectively
on tumor regions. For the t0 and t2 time points, we apply Deformable Attention
separately, where the Query at t0 adopts the Molecular-Aware Query, while at
t2, the Query remains derived from the original MRI feature map. Then we get
the enhanced features:

F ti
MADA = D(Qti ,Kti , Vti , pti), i = 0, 2. (5)

Through Deformable Spatial Focusing, the network dynamically adjusts its
receptive field during feature extraction, reducing irrelevant information and en-
suring that the final MRI feature representation focuses more on tumor regions.
Combined with Molecular-Aware Query Fusion, this deformable cross attention
mechanism enhances the model’s capability to capture the biological character-
istics of tumors.

2.3 Treatment-Aware Longitudinal Modeling (TALM)

We propose Treatment-Aware Longitudinal Modeling (TALM), which explicitly
models the effect of treatment information on imaging feature evolution to im-
prove pCR prediction with the following two main components.

Treatment-Aware Feature Fusion Studies suggest that treatment regimens
influence the evolution of tumor imaging characteristics [4]. To incorporate this
information, we employ Cross Attention to compute the interaction between
chemotherapy information and MRI features, ensuring that imaging features are
adjusted based on treatment factors:

Ftreatment = Ftreatment + Softmax
(
QKT

√
C

)
V, (6)

where the Query Q ∈ RB×1×C originates from molecular features Ftreatment ∈
RB×C , which is also encoded via a Tabular Encoder from raw clinical tabu-
lar data, while the Key and Value matrices are obtained from MRI features
F t0

MADA ∈ RB×Lq×C via linear transformations. After Cross Attention compu-
tation, Ftreatment represents the treatment embedding refined by MRI features
and is used in the subsequent modeling of imaging changes.
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Delta Feature Prediction After Treatment-Aware Feature Fusion, we further
employ supervised learning to model NAC-induced changes in imaging features.
The true imaging change, or delta feature, is computed as:

∆true = f t2
MADA − f t0

MADA, (7)

where f t0
MADA and f t2

MADA are derived from F t0
MADA and F t2

MADA via a basic pool-
ing module, respectively.

To predict the expected imaging change, we train an MLP to map treatment
embeddings to delta features:

∆pred = WδFtreatment, (8)

where Wδ is a learnable transformation matrix that projects the treatment em-
bedding, refined by imaging features, into the delta feature space. To ensure the
model learns how to predict NAC-induced changes from treatment embeddings,
we apply an MSE loss to supervise ∆pred:

Ldelta = MSE(∆true, ∆pred). (9)

This loss function ensures that the model not only captures intrinsic imaging
changes but also incorporates treatment information to model change dynamics.

Through TALM, the model jointly captures treatment information and lon-
gitudinal imaging changes.

3 Experiments

3.1 Implementation Details

The MRI input has a size of 64×128×128 (D×H×W ), which can cover most of
the complete unilateral breast region. The dataset is sourced from ISPY-2 [14],
and based on imaging completeness (availability of both pre-NAC and post-
NAC time points, with DCE-MRI including Phase 0 and Phase 3), 707 patients
were selected from an initial cohort of 985 patients. To ensure consistent MRI
resolution, resampling was performed to achieve a pixel spacing of 1mm×1mm×
2mm (x × y × z). Clinical data consists of HR/HER2 status (one-hot encoded
with a dimension of 2) and chemotherapy regimen (Agent, one-hot encoded with
a dimension of 12).

All experiments were conducted on two NVIDIA V100 GPUs. The model was
trained for 100 epochs, with the first 5 epochs as a warm-up stage. The batch
size was set to 8. The initial learning rate was 0.001 and was gradually reduced
to 0.0001 using a cosine annealing schedule. The classification loss function was
Focal Loss [11] to address class imbalance issues . The overall loss function is
defined as:

L = Lfocal + λLauxiliary = Lfocal + λ1Ldice + λ2Ldelta, (10)

where λ balances all loss components during training. The model performance
was evaluated using Area Under the Curve (AUC), Accuracy (ACC), Sensitivity
(SEN), and Specificity (SPE).
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Table 1. Performance comparison of different model variants.

Model Backbone MADA TALM Evaluation

MQF DSF AUC↑ ACC↑ SEN SPE

Baseline ✓ × × × 0.6064 0.7092 0.1277 1.0
Model1-1 ✓ ✓ × × 0.7134 0.7376 0.5106 0.8511
Model1-2 ✓ × ✓ × 0.6548 0.6596 0.4468 0.7660
Model1-3 ✓ ✓ ✓ × 0.7372 0.7021 0.4894 0.8095
Model2-1 ✓ × × ✓ 0.5715 0.6099 0.2979 0.7660
LMF ✓ ✓ ✓ ✓ 0.7574 0.7518 0.6596 0.7979

3.2 Results

Ablation Study We evaluate the impact of different model components on
pCR prediction performance. Table 1 presents the performance comparison of
different model variants.

Comparing the Baseline model (only Backbone and simple molecular embed-
ding) with Model1-1, Model1-2, and Model1-3 demonstrates that incorporating
MADA (including Molecular Query Fusion (MQF) and Deformable Spatial Focus
(DSF)) significantly improves performance. Model1-1 and Model1-2 assess the
independent contributions of MQF and DSF, showing that MQF alone (Model1-
1) provides a notable boost, and Model1-3 indicates that combining MQF and
DSF (Model1-3) further enhances predictive performance.

Next, the effect of the TALM module is examined by comparing Model2-1
and LMF. Model2-1, which incorporates TALM without MADA, shows a decline
in AUC compared to the Baseline, despite some improvement in SEN. This sug-
gests that without prior feature enhancement from MADA, the model struggles
to extract meaningful information for effective delta feature modeling. In con-
trast, LMF, which integrates both MADA and TALM, achieves the best overall
performance, with AUC reaching 0.7574 and substantial improvements in SEN
(0.6596) and SPE (0.7979), demonstrating that their combination optimally en-
hances the model’s predictive capability.

These results confirm that MADA enhances feature extraction, TALM im-
proves longitudinal modeling, and their combination achieves optimal perfor-
mance in pCR prediction.

Comparison with other Methods To validate the effectiveness of our ap-
proach, we compare it with existing methods in MRI-Clinical Fusion (MCF)
and Longitudinal Modeling (LM), Table 2 presents the results. For multi-
modal fusion, we evaluate naive concatenation (iMRrhpc) [4], Cross Attention
(3DCT-ICH) [21], and our LMF incorporating MADA. The results indicate that
MRI and tabular fusion significantly improves performance, confirming the im-
portance of leveraging molecular and treatment information. Furthermore, deep
fusion methods, especially our deformable cross-attention mechanism, outper-
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Table 2. Comparison with other methods.

Method Model Components Evaluation

MCF LM AUC↑ ACC↑ SEN SPE

3DCT-ICH [21] ✓ × 0.7134 0.7376 0.5106 0.8511
M2Fusion [22] × ✓ 0.7200 0.6809 0.4894 0.7766
iMRrhpc [4] ✓ ✓ 0.7205 0.7092 0.5106 0.8085

LMF (Ours) ✓ ✓ 0.7574 0.7518 0.6596 0.7979

form simple concatenation, demonstrating the benefits of structured multimodal
feature integration.

For longitudinal modeling, we compare contrastive loss (M2Fusion) [22], iM-
Rrhpc with timepoint embeddings [4], and our LMF with TALM. The exper-
iments show that naive concatenation of timepoint embeddings struggles to
model complex chemotherapy responses, while contrastive loss, although im-
proving upon iMRrhpc, has limitations: it assumes that pCR cases exhibit large
imaging changes while non-pCR cases remain stable, which does not always hold
due to response heterogeneity. Additionally, contrastive loss focuses on feature
alignment rather than explicitly modeling the causal effect of treatment, limiting
its ability to capture NAC-induced imaging variations. Our full model (LMF)
achieves the best performance, confirming that explicit treatment-aware model-
ing effectively captures longitudinal tumor dynamics.

4 Conclusions

In this work, we propose a novel LMF(Longitudinal MRI-Clinical Multimodal
Fusion) model for prediction of pathologic complete response (pCR) in breast
cancer patients undergoing neoadjuvant chemotherapy (NAC). By decoupling
the key steps of information extraction and temporal modeling, our approach im-
proves prediction accuracy with low annotation burden. We introduced Molecul-
ar-Aware Deformable Attention (MADA) for enhanced feature extraction and
Treatment-Aware Longitudinal Modeling (TALM) for modeling chemotherapy-
induced changes. Trained and validated on the ISPY-2 dataset, our results
demonstrate that the proposed modules effectively improve pCR prediction,
outperforming traditional methods. This work highlights the potential of mul-
timodal deep learning in improving treatment response assessment and pCR
prediction in clinical practice.
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