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Abstract. Histo-genomic multimodal survival prediction has garnered
growing attention for its remarkable model performance and potential
contributions to precision medicine. However, a significant challenge in
clinical practice arises when only unimodal data is available, limiting
the usability of these advanced multimodal methods. To address this
issue, this study proposes a prototype-guided cross-modal knowledge en-
hancement (ProSurv) framework, which eliminates the dependency on
paired data and enables robust learning and adaptive survival predic-
tion. Specifically, we first introduce an intra-modal updating mecha-
nism to construct modality-specific prototype banks that encapsulate
the statistics of the whole training set and preserve the modality-specific
risk-relevant features/prototypes across intervals. Subsequently, the pro-
posed cross-modal translation module utilizes the learned prototypes to
enhance knowledge representation for multimodal inputs and generate
features for missing modalities, ensuring robust and adaptive survival
prediction across diverse scenarios. Extensive experiments on four pub-
lic datasets demonstrate the superiority of ProSurv over state-of-the-
art methods using either unimodal or multimodal input, and the abla-
tion study underscores its feasibility for broad applicability. Overall, this
study addresses a critical practical challenge in computational pathology,
offering substantial significance and potential impact in the field. Codes
are available at https://github.com/cyclexfy/ProSurv.

Keywords: Survival Analysis · Missing-Modality Learning · Prototype
Learning · Cross-Modal Translation.

1 Introduction

Survival analysis seeks to estimate the risk of specific events, e.g. death or dis-
ease recurrence; consequently, it is crucial for disease progression estimation and
treatment strategy selection in clinical practice [11,25]. Recently, whole-slide
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pathological images (WSIs) and genomic data have been widely used to model
patient characteristics, with the first and second types of data capturing micro-
scopic morphology features and quantitative molecular information, respectively.

Existing computational pathology methods can be roughly categorized as:
WSI-based unimodal, genome-based unimodal, and histo-genomic multimodal
methods. The unimodal methods, either WSI-based [1,6,9,16,20,22,23] or genome-
based [13] ones, have demonstrated significant success in model performance
and interpretation. However, the intrinsic complexity and heterogeneity of tu-
mors urge the use of multimodal data to provide a more comprehensive charac-
terization of patients. Born out of necessity, numerous multimodal approaches
[4,10,27,30] have been developed to leverage the complementary and shared in-
formation provided by different data modalities. These approaches achieve better
prediction accuracy by effectively combining the strengths of both modalities.

Although multimodal approaches have an advantage over unimodal ones in
performance, they face a significant challenge in clinical practice [24], i.e., these
developed methods do not apply to patients without complete data. This sce-
nario is particularly common in current clinical systems, where patients often
transfer between hospitals during the diagnostic phase or may not undergo spe-
cific examinations due to suboptimal conditions [18]. From the methodology
perspective, there are two potential solutions. First, using knowledge distillation
[2,8] to transfer multimodal knowledge to unimodal networks. However, this is
constrained by low training efficiency and flexibility. Second, direct cross-modal
reconstruction for multimodal knowledge completion is infeasible due to inherent
heterogeneity between pathology and genomic modality [15].

To address the challenges, this paper proposes a prototype-guided cross-
modal knowledge enhancement method (ProSurv). Specifically, through an intra-
modal updating mechanism, we construct modality-specific prototype banks that
capture risk-relevant features across intervals and encapsulate statistics of the
whole training set. Afterward, the proposed cross-modal translation module uti-
lizes prototypes as guidance to enhance knowledge representation for multimodal
inputs and generate missing modality features for unimodal input. Consequently,
our method eliminates the dependency on paired data and enables robust learn-
ing and adaptive survival prediction in diverse scenarios. We extensively evaluate
ProSurv on four public datasets and demonstrate the superiority of our method
over state-of-the-art methods using either unimodal or multimodal input. The
ablation study underscores its feasibility for broad applicability.

2 Methodology

Fig. 1 illustrates the framework of ProSurv, which comprises three steps in-
cluding data preprocessing and feature extraction, prototype bank update and
cross-modal translation, and knowledge-enhanced learning. The following sub-
sections introduce them in detail.
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Fig. 1. Overview of the ProSurv. We first proceed with data preprocessing and feature
extraction for WSIs and genomic data (a). Afterward, prototype banks are established
corresponding to the input modalities and prototype-guided cross-modal translation
modules enable the cross-modal feature translation (b). Eventually, the features from
input data and translated modules jointly achieve the adaptive survival analysis (c).

2.1 Problem Formulation

Survival analysis [5] aims to predict time-to-event outcomes, where the event may
not be fully observed. For the i-th patient, we model the survival and hazard
functions as f i

surv(T ≥ t | Xi) and f i
hazard(T = t | T ≥ t,Xi), respectively. Here,

Xi = {P i, Gi, ci, ti} represents the patient’s data, where P i, Gi, and ci ∈ {0, 1}
are the WSI, genomic profiles, and censorship status, respectively, and ti ∈ R+

indicates overall survival (in months). Here, survival time ti is discretized into
K intervals {bin1, ..., binK}, allowing the model to estimate the hazard function
for each bin. The survival function is approximated as: f i

surv(tk) =
∏k

u=1(1 −
f i
hazard(tu)), where tk corresponds to the k-th bin. We learn the representation
f(Xi) to compute the survival loss Lsurv(f(X

i), ti, ci) using the negative log-
likelihood (NLL) loss function [29].

2.2 Data Preprocessing and Feature Extraction

Pathological Image Feature. Given an input WSI P i from the i-th patient,
we remove the non-tissue regions and then crop the rest into non-overlapping
patches. The preprocessed data can be denoted as {pij}N

i

j=1, where N i represents
the total patch number. The patches are then fed into a pre-trained feature
extractor Ep(·) to obtain a bag of patch features. Afterward, L Transformer
layers [21,26] are employed to model relations between patches, followed by a
global average pooling (GAP) to derive the WSI-level representation. The whole
process can be formulated as: F i

p = GAP(Transformer(L)({Ep(p
i
j)}N

i

j=1)) ∈ R1×d.
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Fig. 2. Details of the intra-modal prototype update (a) and prototype-guided cross-
modal translation (b). Here, we employ pathological features as an input for demon-
stration.

Genomic Feature. The input genomic data Gi consists of numerous 1 × 1
measurements {gij}Mj=1, where M means gene panel range. A Self-Normalizing
Neural Network [13] Eg(·) is applied for feature extraction. This process can be
formulated as F i

g = Eg({gij}Mj=1) ∈ R1×d, where d is the feature dimension.

2.3 Intra-Modal Prototype Update

To preserve modality-specific knowledge, we construct pathological prototype
bank Bp ∈ RK×n×d and genomics prototype bank Bg ∈ RK×n×d corresponding
to the two modalities. Here, K is identical to the number of intervals and n is
the number of prototypes in each bank. To enable prototypes with more risk-
relevant knowledge, we develop an intra-modal prototype updating mechanism
(Fig. 2(a)).

Given the extracted features from the i-th patient, we calculate the cosine
similarity between the features and the corresponding prototypes recorded in
the bank. Taking the pathological feature F i

p as an example, we can obtain:

wi,k
p =

1

K

n∑
j=1

wi,k,j
p , where wi,k,j

p =
Norm(F i

p) · Norm(Bk,j
p )

∥Norm(F i
p)∥∥Norm(Bk,j

p )∥
. (1)

In Eq. 1, Norm(·) is a min-max normalization, ∥ ·∥ denotes the Euclidean Norm,
Bk,j

p indicates the j-th prototype in the k-th bin of the pathology prototype
bank, wi,k

p measures the average value between the input data and the proto-
types of the k-th bin. To enhance prototype representations, we employ risk
contrastive learning, which pulls prototypes from the same time interval closer
to the input feature and pushes those from different intervals apart. Considering
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the complexity of survival data, we introduce event-aware sampling. Specifically,
for uncensored data, prototypes from the bin corresponding to the label are
treated as positive samples, while others are negative. For censored data, the
censoring time is treated as a key node: prototypes before the censoring time are
negative samples, while those after it are positive, as the patient is alive before
the censoring time. Hence, the entire procedure can be summarized as follows:

Lp
sim = (1− ci)(−wti

p +
∑
tk ̸=ti

wtk

p

K − 1
) + ci(−

∑
tk≥ti

wtk

K − ti + 1
+

∑
tk<ti

wtk

ti − 1
), (2)

where ti represents the the bin corresponding to the event occurrence.
In the training process, the intra-modal prototype update mechanisms are

applied to each modality, which can be formulated as: Lp,g
sim = Lp

sim + Lg
sim.

2.4 Prototype-Guided Cross-Modal Translation

The prototype-guided cross-modal translation aims to utilize the input features
along with the prototype banks to reconstruct cross-modal features, as shown
in Fig. 2(b). The function is mathematically achieved through a cross-attention
mechanism [21]. Here, we take the i-th patient as an example. When reconstruct-
ing genomic features, pathological features F i

p serves as the query Qp to interact
with keys Kg, the genomic prototype bank, producing attention scores reflecting
histo-genomics associations. Afterward, the values Vg derived from the genomic
bank are multiplexed with the attention scores, generating the final reconstructed
cross-modal features. The whole process can be formulated as follows:

F i
p2g = σ

(
(W q

pF
i
p)(W

k
g Bg)

T

τ
√
d

)
(W v

g Bg), (3)

where σ(·) is a softmax function, T and τ represent a transpose operation and
a temperature coefficient, respectively. Similarly, translating genomic features F i

g

to the pathological ones can be formulated as: F i
g2p = σ

(
(W q

g F i
g)(W

k
p Bp)

T

τ
√
d

)
(W v

pBp).

To enhance the learning process, we selectively align reconstructed features
with their original counterparts when the complete modality pairs are available.
The corresponding loss Lalign is defined as:

Lp,g
align = Lp

align + Lg
align = ∥F i

p − F i
g2p∥2 + ∥F i

g − F i
p2g∥2. (4)

2.5 Knowledge-Enhanced Learning and Prediction

Knowledge-enhanced learning (Fig. 1(c)) is designed to conduct adaptive survival
prediction regardless of the input data conditions. Here, we introduce two cases:
the patient with complete data modalities and incomplete data modality.
Complete Modalities. With the complete modalities, we can obtain the orig-
inal features F i

p, F i
g, and the translated features F i

g2p, F i
p2g. Then, we fuse the
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Table 1. Performance comparison using C-index (mean ± standard deviation) on four
cancer datasets. The best result is shown in red, and the second-best one is in blue.
“P” and “G” are abbreviations of pathology and gene, respectively. “∗” represents the
multimodal training and unimodal testing scenario.

Methods Modal Datasets Overall
P G BRCA BLCA STAD CRAD

ABMIL ✓ × 0.613±0.118 0.575±0.050 0.561±0.059 0.586±0.115 0.584
TransMIL ✓ × 0.625±0.080 0.614±0.046 0.522±0.050 0.525±0.118 0.572
WIKG ✓ × 0.613±0.086 0.585±0.047 0.551±0.049 0.517±0.127 0.569
MambaMIL ✓ × 0.617±0.078 0.612±0.058 0.574±0.041 0.588±0.095 0.598

SNN × ✓ 0.576±0.112 0.539±0.052 0.539±0.032 0.616±0.090 0.568
SNNTrans × ✓ 0.551±0.097 0.553±0.043 0.555±0.057 0.614±0.125 0.568

MCAT ✓ ✓ 0.654±0.077 0.616±0.055 0.572±0.098 0.615±0.141 0.614
MOTCAT ✓ ✓ 0.665±0.111 0.600±0.051 0.563±0.084 0.593±0.169 0.605
CMTA ✓ ✓ 0.604±0.045 0.642±0.072 0.577±0.098 0.586±0.075 0.602
SurvPath ✓ ✓ 0.675±0.069 0.584±0.040 0.551±0.040 0.585±0.100 0.599

G-HANet ✓ ∗ 0.677±0.071 0.603±0.054 0.588±0.050 0.598±0.169 0.617

✓ ∗ 0.701±0.101 0.611±0.032 0.620±0.069 0.626±0.090 0.640
∗ ✓ 0.578±0.110 0.646±0.046 0.540±0.079 0.595±0.056 0.590ProSurv
✓ ✓ 0.675±0.070 0.655±0.047 0.609±0.073 0.641±0.088 0.645

original features with the corresponding translated features using an averaging
function and then utilize the concatenated features as the final patient represen-
tation for survival prediction. The process can be formulated as follows:

Hp,g = ϕ(Concat(F i
ep, F

i
eg)), where F i

ep =
F i
p + F i

g2p

2
, F i

eg =
F i
g + F i

p2g

2
. (5)

Here, ϕ(·) is a full-connected (FC) layer followed by a sigmoid function, Concat
means concatenation. Under this scenario, the training loss is expressed as:
Lp,g

total = Lp,g
surv+αLp,g

sim+βLp,g
align, where α and β are hyperparameters for balance.

Incomplete Modality. When the patient only has one kind of data, ProSurv
also can perform robust learning and prediction. For example, with only WSI in-
put, ProSurv can generate the translated genomic feature F i

p2g from pathological
features F i

p. Afterward, we fuse these features for the final prediction Hp:

Hp = ϕ(Concat(F i
p, F

i
p2g)). (6)

Vice versa as: Hg = ϕ(Concat(F i
g, F

i
g2p)). The training loss under the incomplete

data input is considered: Lp
total = Lp

surv+αLp
sim (only pathology input) or Lg

total =
Lg

surv + αLg
sim (only gene input).

3 Experiments and Results

3.1 Datasets & Evaluation Metric & Implementation Details

Experiments were performed on four public datasets from The Cancer Genome
Atlas (TCGA). Specifically, we used 868 cases of Breast Invasive Carcinoma



ProSurv for Adaptive Survival Analysis 7

Table 2. Ablation study. For each testing scenario, the best performance is highlighted
in red, while the second-best performance is in blue. “w/o” means without.

Methods Modal Datasets Overall
P G BRCA BLCA STAD CRAD

w/o Prototypes ✓ ∗ 0.660±0.068 0.601±0.041 0.503±0.047 0.617±0.111 0.595
w/o Lsim ✓ ∗ 0.639±0.069 0.618±0.043 0.533±0.104 0.618±0.131 0.602
w/o Lalign ✓ ∗ 0.687±0.079 0.616±0.042 0.534±0.100 0.616±0.128 0.613
ProSurv ✓ ∗ 0.701±0.101 0.611±0.032 0.620±0.069 0.626±0.090 0.640

w/o Prototypes ∗ ✓ 0.500±0.085 0.625±0.058 0.517±0.073 0.549±0.054 0.548
w/o Lsim ∗ ✓ 0.580±0.123 0.634±0.048 0.553±0.127 0.565±0.058 0.583
w/o Lalign ∗ ✓ 0.554±0.079 0.644±0.044 0.558±0.134 0.556±0.070 0.578
ProSurv ∗ ✓ 0.578±0.110 0.646±0.046 0.540±0.079 0.595±0.056 0.590

w/o Prototypes ✓ ✓ 0.648±0.060 0.637±0.064 0.495±0.059 0.623±0.108 0.601
w/o Lsim ✓ ✓ 0.610±0.087 0.648±0.047 0.531±0.112 0.610±0.129 0.600
w/o Lalign ✓ ✓ 0.662±0.058 0.654±0.047 0.528±0.117 0.606±0.124 0.613
ProSurv ✓ ✓ 0.675±0.070 0.655±0.047 0.609±0.073 0.641±0.088 0.645

(BRCA), 359 cases of Bladder Urothelial Carcinoma (BLCA), 318 cases of Stom-
ach Adenocarcinoma (STAD), and 294 cases of Colon and Rectum Adenocarci-
noma (CRAD). All WSIs were processed at 20× magnification using CLAM [16]
and genomic data was processed using min-max normalization. For each dataset,
we randomly split the data into training, validation, and test sets with a ratio
of 6:2:2, and reported the average C-index [7] across 5-fold cross-validation.

ProSurv is implemented on PyTorch 1.12.1 [19] using an NVIDIA RTX 4090
GPU. Patch-level features are extracted using the UNI model [3]. 4,096 patches
out of the whole image are randomly selected from each WSI during training,
while all patches are used for validation and testing. The Adam optimizer [12]
is employed for model optimization with a constant learning rate of 1e-4 and a
weight decay of 1e-4. Each model is trained for a maximum of 50 epochs, and
the best-performing model on the validation set is used for testing. We set the
hyper-parameters as: K = 4, n = 32, τ = 0.5, α = 0.2, and β = 0.2.

3.2 Model Performance Comparison

We compared the ProSurv with 11 state-of-the-art survival analysis methods,
ranging from image-based [9,14,20,28], genome-based [13], multimodal [4,10,27,30],
and multimodal training unimodal testing method [24] under various scenarios.

Table 1 illustrates the quantitative results, from which we can derive the
following observations: (1) Multimodal methods generally outperform unimodal
methods, highlighting that multimodal data contains more survival-related infor-
mation than unimodal data. (2) ProSurv achieves state-of-the-art performance
with multimodal inference, obtaining an overall C-index of 0.645. This indi-
cates the superiority of the knowledge enhancement brought by prototype-guided
cross-translation. (3) ProSurv excels in inference using unimodal data. When us-
ing only pathology images, ProSurv achieves a promising C-index of 0.640, sur-
passing G-HANet (0.617) and MCAT (0.614) significantly. This demonstrates



8 F. Liu et al.

Fig. 3. Distribution visualizations of original and translated features (a). Robustness
evaluation using a mixture of uni- and multimodal training data on TCGA-CRAD (b).

that the prototypes capture the multimodal knowledge and can effectively en-
hance the patients’ representations for survival prediction using unimodal data.

3.3 Ablation Study

In this subsection, we perform ablation experiments to validate the effectiveness
of each module, with experimental results in Table 2 and Fig. 3.
Effectiveness of Prototypes. We replace the cross-modal translation modules
with multi-layer perceptrons. The overall C-index decreases by 4.2% under vari-
ous scenarios. This is expected, as discarding prototypes means losing modality-
specific knowledge, reducing the knowledge throughout the computation process.
Effectiveness of Intra-Modal Prototype Update. The use of intra-modal
prototype update makes the prototypes effectively capture risk-relevant knowl-
edge, with 3.8%, 0.7%, and 4.5% C-index improvements under pathology-only,
gene-only, and complete modality scenes, respectively.
Effectiveness of Prototype-Guided Cross-Modal Translation. Alignment
loss Lalign is used to optimize translated features in ProSurv. As shown in Ta-
ble 2, abandoning the loss leads to inferior model performance. Additionally,
Fig. 3(a) visualizes the feature distributions of original and translated features
using t-SNE [17]. The highly identical distributions of the counterpart features
reveal the reality of the translated features and the effectiveness of the module.
Model Robustness Evaluation. Different from existing methods, ProSurv can
adaptively learn knowledge from incomplete data. Fig. 3(b) illustrates the model
performance across varying rates of unimodal data while training the neural
network. When the rate is lower than 50%, the performance of ProSurv does not
degrade significantly, showing its powerful learning capability and providing an
insightful solution for adaptive survival analysis.
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4 Conclusion

In this paper, we present ProSurv, a prototype-guided cross-modal knowledge en-
hancement framework for adaptive survival analysis. The key innovations of Pro-
Surv lie in using prototype banks to generate cross-modal features and achieve an
adaptive survival prediction using arbitrary input data. Extensive experiments
including performance comparison and ablation study underscore the superiority
and robustness of ProSurv. ProSurv addresses a critical practical challenge in
computational pathology, offering substantial significance for precision medicine.
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