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Abstract. In recent years, Visual Question Localized-Answering in robotic
surgery (Surgical-VQLA) has gained significant attention for its poten-
tial to assist medical students and junior doctors in understanding sur-
gical scenes. Recently, the rapid development of Large Language Models
(LLMs) has provided more promising solutions for this task. However,
current methods struggle to establish complex dependencies between text
and visual details, and have difficulty perceiving the spatial informa-
tion of surgical scenes. To address these challenges, we propose a novel
method, Surgical-MambaLLM, which is the first to combine Mamba2
with LLM in the surgical domain, that leverages Mamba2’s ability to
effectively capture cross-modal dependencies and perceive spatial infor-
mation in surgical scenes, thereby enhancing the LLMs’ understand-
ing of surgical images. Specifically, we propose the Cross-modal Bidi-
rectional Mamba2 Integration (CBMI) module to leverage Mamba2 for
effective multimodal fusion, with its cross-modal integration capabilities.
Additionally, tailored to the geometric characteristics of surgical scenes,
we design the Surgical Instrument Perception (SIP) scanning mode for
Mamba2 to scan the surgical images, enhancing the model’s spatial un-
derstanding of the surgical scene. Extensive experiments demonstrate
that our Surgical-MambaLLM model outperforms the state-of-the-art
methods on the EndoVis17-VQLA and EndoVis18-VQLA datasets, sig-
nificantly improving the performance of the Surgical-VQLA task.

Keywords: Robotic-assisted surgery · Multimodal Large Language Model
· Mamba · Surgical visual question localized-answering

1 Introduction

Intelligent robotic surgery systems and the task of Visual Question Localized-
Answering in robotic surgery (Surgical-VQLA) have garnered significant atten-
tion in recent years [4]. Surgical-VQLA can answer questions about organs, the
location of surgical instruments, and surgical procedures based on surgical im-
ages, while simultaneously providing the corresponding bounding boxes. This
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task not only assists medical students and junior residents in resolving ques-
tions about surgical procedures, thereby reducing the workload of experienced
surgeons [26], but also enhances the interpretative capabilities of intelligent sur-
gical robotic systems in understanding surgical scenes [4,30,29].

Current Surgical-VQLA methods [4,3,5,12] have achieved significant success
in performance by using pre-trained vision and language models as backbone
networks. In recent years, Large Language Models (LLMs) have made remark-
able progress in natural language processing (NLP) [21]. Inspired by this, [8]
first introduced LLMs into the surgical domain and achieved remarkable re-
sults, illustrating the immense potential of LLMs in this field. However, these
methods still have some limitations. Firstly, current methods primarily rely on
the Transformer-based method [28,18] for cross-modal fusion, which causes the
models to focus more on global features while neglecting local details. Thus, it
becomes challenging to capture visual details and establish dependencies with
the text, which are essential for accurately answering questions related to the
state of the instruments. Additionally, although some research [8,12,11] has in-
troduced LLMs to surgery-related tasks, LLMs still face significant challenges in
understanding surgical scenes, particularly in perceiving spatial information due
to the complexity of laparoscopic environments.

Recently, the Mamba model, leveraging its State Space Models (SSMs) [16],
has demonstrated the ability to efficiently capture complex dependencies within
sequences while preserving detailed information. The original Mamba model
performs unidirectional scanning of text sequences, which is not suitable for
spatially-aware visual tasks [35]. However, some methods [35,32,31] have proved
that multi-directional scanning can enhance Mamba’s spatial perception capa-
bilities for 2D vision. Inspired by this, we explore the possibility of combining
Mamba with LLMs to leverage Mamba’s ability to effectively capture cross-
modal dependencies and perceive spatial information in surgical scenes, thereby
enhancing LLMs’ understanding of surgical images.

In this work, we propose the Surgical-MambaLLM model, the first method
in the surgical domain to combine the Mamba2 [9] model with LLM to address
Surgical-VQLA. To achieve effective cross-modal fusion and accurately perceive
spatial information in surgical scenes, we design the Cross-modal Bidirectional
Mamba2 Integration (CBMI) module. This module facilitates the establishment
of complex dependencies between visual details and questions. Within CBMI,
the Surgical Instrument Perception (SIP) scanning mode is designed instead
of unidirectional sequence scanning [10], which can enhance Mamba2’s spatial
awareness and understanding of surgical images. Subsequently, the fused features
are processed through a projector, concatenated with the textual features, and
then input into the LLM. To improve the performance of the LLM, we fine-tune it
using the LoRA [14] technique, thereby obtaining the final feature representation.
Finally, the output features are fed into the answer prediction head and the
position prediction head to obtain the final prediction results.

Overall, contributions are as follows: (1) We propose the Surgical-MambaLLM,
which is the first method that integrates Mamba2 with Large Language Model
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Fig. 1. An overview of the framework of our Surgical-MambaLLM. Questions are input
into the tokenizer to obtain the question embedding, while surgical images are processed
by the vision encoder to extract the visual features. These features are integrated within
the CBMI module, which utilizes our SIP scanning mode to scan the vision features and
employs modified bidirectional Mamba2 blocks for multimodal feature fusion. The fused
features are then projected into the LLM to generate answer and location predictions.
The training process involves two stages: initially training the vision encoder, CBMI,
and projector with frozen LLM parameters, followed by fine-tuning LLM using LoRA.

in the surgical domain. By leveraging Mamba2’s ability to capture complex de-
pendencies between different modalities, we achieve effective multimodal fusion,
significantly enhancing LLM performance in Surgical-VQLA tasks. (2) We intro-
duce the Cross-modal Bidirectional Mamba2 Integration (CBMI) module, which
explores effective methods for fusing visual and textual data within Mamba2.
(3) We design an innovative Surgical Instrument Perception (SIP) scanning
mode in CBMI to enhance Mamba2’s spatial understanding of surgical images.
(4) We conduct extensive experiments to validate the effectiveness of Surgical-
MambaLLM in the Surgical-VQLA task. The experimental results demonstrate
that our approach outperforms other State-Of-The-Art (SOTA) models on pub-
licly available EndoVis17-VQLA and EndoVis18-VQLA datasets.

2 Methodology

We propose the Surgical-MambaLLM model, a novel method integrating Mamba2
with LLM to improve LLM’s understanding of surgical scenes. The overall ar-
chitecture of our Surgical-MambaLLM is illustrated in Fig. 1.
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Fig. 2. A and B illustrate the directions of surgical instrument operations in surgical
images; C represents the geometric modeling of the surgical scene; D is the Surgical
Instrument Perception (SIP) scanning mode we proposed.

2.1 Cross-modal Bidirectional Mamba2 Integration Module

Surgical Instrument Perception Scanning Mode In robotic surgery, sur-
geons typically operate from a console, observing the procedure on screens and
manipulating control sticks to guide the robotic instruments [22]. To facilitate
the surgeon’s operation, the target organ or tissue is usually in the center of the
laparoscopic image, while the ends of the robotic instruments extend from the
periphery towards the central target organ [17], as illustrated in Fig. 2 A and
Fig. 2 B. This observation indicates that the operation of surgical instruments in
laparoscopic surgery exhibits a clear directionality from the periphery towards
the center, which can be geometrically abstracted as a radial pattern from the
center outward, as shown in Fig. 2 C. Therefore, we propose the Surgical Instru-
ment Perception (SIP) scanning mode for the Mamba2 model, which performs
a radial scan from the center towards four directions, ultimately scanning the
entire image to obtain a global representation, as shown in Fig. 2 D. By scanning
from the center outward, the SIP scanning mode is highly likely to capture con-
tinuous regions of instrument features within the image, rather than dispersing
the instrument’s image features across different scanning areas. This approach
helps maintain the integrity of the instrument regions, thereby enhancing the
mamba2’s spatial awareness of the surgical scene.

Specifically, taking the first quadrant as an example, the scanning starts at
(α, β), as shown in Fig. 3 (b). The maximal value of xn or yn is N , and the
trajectory can be described by the following formula:

(xn+1, yn+1) =


(0, yn − kn) if yn = N, xn ̸= N

(xn − kn, 0) if xn = N

(xn + 1, yn + 1)

, (1)

kn =

{
xn + 1 if yn > xn

yn − 1 if yn ≤ xn

, (2)

where (xn, yn) is the current point, (xn + 1, yn + 1) is the next point and the
initial point is (x0, y0) = (α, β). kn is a dependent variable that can be denoted as
(2). Subsequently, we sequentially scan the fourth, third, and second quadrants,
ultimately obtaining the features of the entire image.
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Fig. 3. (a) is the architecture of Mamba2 Scan; (b) presents the details of the scanning
track; (c) is the framework of the CBMI module.

Cross-modal Bidirectional Mamba2 In the multimodal domain, most ex-
isting Mamba methods [23,34] typically only concatenate visual features with
textual features without designing fusion methods specifically for the two modal-
ities. Therefore, we propose the Cross-modal Bidirectional Mamba2, which per-
forms bidirectional scanning of visual features and textual features through the
SIP scanning mode to achieve efficient feature fusion and improve the model’s
spatial understanding of surgical scenes, as shown in Fig. 3 (c).

Specifically, first, the text embedding t and the visual embedding v are pre-
liminarily processed through linear projections to get visual feature Ft and text
feature Fv:

Ft = lt(t), Fv = lv(v), (3)

where lt and lv are linear layer for feature projection.
Subsequently, Fv and Ft are input into the SIP-Mamba2 Forward and SIP-

Mamba2 Backward module. In this module, Ft undergoes 1D scanning, and Fv

undergoes bidirectional scanning in the SIP scanning mode to obtain sequence
features in opposite directions. Then Ft and the bidirectional Fv are input into
the Mamba2 Scan to obtain the fused forward sequence features Sforward and
backward sequence features Sbackward. The structure of the Mamba2 Scan is
shown in Fig. 3 (a). The formula is as follows:

Sforward = SIP-Mamba2forward(Ft, Fv), (4)

Sbackward = SIP-Mamba2backward(Ft, Fv), (5)

where SIP-Mamba2forward is SIP-Mamba2 Forward module, and SIP-Mamba2backward
is SIP-Mamba2 Backward module. Next, Sforward and Sbackward are multiplied
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by the original features Fv activated by σ and then added together to obtain
the fused features S. Finally, normalization and linear projection are applied to
obtain the output features Soutput. The formula is as follows:

S = Sforward · σ(Fv) + Sbackward · σ(Fv), (6)

Soutput = Linear(LN(S)), (7)

where σ is the activation function, Linear is a linear layer and LN denotes Layer
normalization.

2.2 Training Strategy

Our training strategy consists of two stages for efficient model training. In the
first stage, we freeze the parameters of LLM and train the vision encoder, CBMI
module, projector, answer head and location head. This stage aims to enable the
CBMI module to fuse visual and textual features effectively and adapt its output
to the LLM via the projector. This process ensures that the vision encoder and
the CBMI module can fully understand and process the complex information
present in surgical scenarios. In the second stage, we fine-tune the LLM using
LoRA techniques, applying a lower learning rate. This fine-tuning further op-
timizes the LLM for surgical-VQLA tasks while preserving the initial learning
outcomes.

3 Experiments and Results

3.1 Dataset

EndoVis-18-VQLA This Dataset from the 2018 MICCAI Endoscopic Vision
Challenge [1] includes video sequences from 14 surgeries. The annotations for
EndoVis-18-VQLA are accessible via [4]. Recent work [5] has expanded the train-
ing set from 9014 to 12741 QA pairs and the test set from 2769 to 3820 QA pairs.
Following [5], we used the expanded dataset to ensure robustness and credibility
in our study. Following previous works [4,3,5], it includes 1,560 training frames
and 436 test frames.
EndoVis-17-VQLA This Dataset from the 2017 MICCAI Endoscopic Vision
Challenge [2] features 10 robotic surgery video sequences. Annotations are avail-
able publicly [4]. Following guidelines in [4,3,5], we use this dataset for external
validation to test our model’s generalization on unseen data. The dataset has
been expanded from 472 to 708 QA pairs [5], enhancing our study’s robustness,
credibility, and fairness. Models’ performance will be evaluated on these new,
unseen surgical scenarios.

3.2 Implementation Details

We employ the CLIP-ViT-B/32 [24] pre-trained model as our vision encoder. The
backbone of the CBMI module is Mamba2-130M [9], which comprises 24 layers.
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Table 1. Comparison experiments between our Surgical-MambaLLM and other meth-
ods on EndoVis-18 and EndoVis-17 datasets

Models EndoVis - 18 EndoVis - 17
Acc F-Score mIoU Acc F-Score mIoU

VisualBERT [26] 0.6234 0.3269 0.7336 0.4516 0.2698 0.7268
VisualBERT RM [26] (MICCAI’22) 0.6365 0.3087 0.7463 0.4622 0.2865 0.7331

MFH [33] 0.5942 0.3273 0.7541 0.4614 0.3326 0.7237
BlockTucker [7] 0.6268 0.2964 0.7631 0.4552 0.3122 0.7612

MUTAN [6] 0.6298 0.3379 0.7714 0.4784 0.3244 0.7694
GVLE-LViT [4] (ICRA’23) 0.6512 0.3365 0.7739 0.4565 0.2679 0.7296

CAT-ViL DeiT [3] (MICCAI’23) 0.6436 0.3421 0.7712 0.4765 0.3467 0.7621
Surgical-VQLA++ [5] (INFORM FUSION’25) 0.6573 0.3203 0.7956 0.4983 0.4365 0.7764

EnVR-LPKG [12](JBHI’25) 0.6723 0.3826 0.7894 0.4786 0.4126 0.7438
Surgical-MambaLLM (our) 0.6964 0.4110 0.8027 0.5191 0.4406 0.7648

Table 2. Ablation study on different variants of our approach on the EndoVis-18 and
EndoVis-17 datasets. Baseline, M1, M2, M3, M4, and M5 represent diverse ablation
models, while Surgical-MambaLLM is our proposed model. Fusion Module represents
the cross-modal fusion module in the network, Scanning Mode means different scanning
modes utilized in the CBMI module

Models Scanning Mode Fusion Module EndoVis-18 EndoVis-17
Acc F-Score mIoU Acc F-Score mIoU

Baseline × × 0.6537 0.3595 0.7742 0.4216 0.3494 0.7315
M1 Simple 1D Scan CBMI 0.6644 0.3335 0.7951 0.4826 0.3116 0.7434
M2 Bi-Scan [15] CBMI 0.6615 0.3663 0.7915 0.4256 0.3774 0.7611
M3 Cross-Scan [19] CBMI 0.6834 0.3420 0.7965 0.4675 0.3669 0.7348
M4 SIP Mamba 0.6833 0.3795 0.7847 0.4778 0.4011 0.7506
M5 × Transformer 0.6610 0.3524 0.7895 0.4766 0.3947 0.7559

Surgical-MambaLLM (our) SIP CBMI 0.6964 0.4110 0.8027 0.5191 0.4406 0.7648

Our LLM is based on InternLM-7B [27], featuring 32 layers. The projector is a
2-layer MLP. The classification head is a simple linear layer, while the location
head is a 4-layer MLP. Our model is implemented using PyTorch and trained
on a workstation equipped with 6 NVIDIA GeForce RTX 3090 GPUs. Following
[4,3,5], we use Accuracy (Acc) [13], F-Score [13], and mIoU [25] as evaluation
metrics. The batch size per GPU is 8. We utilize the AdamW optimizer [20] with
a learning rate of 1× 10−5 for the first stage and 1× 10−6 for the second stage,
and a dropout rate of 0.1.

3.3 Experiment Results

Comparisons with SOTAs. In Table 1, we compare the performance of Surgical-
MambaLLM with other state-of-the-art models on the EndoVis-18 and EndoVis-
17 datasets. The comprehensive results indicate that Surgical-MambaLLM out-
performs other methods on both datasets, demonstrating its superiority. Specif-
ically, Surgical-MambaLLM achieves significantly higher Accuracy, F-Score, and
mIoU on the EndoVis-18 dataset compared to other methods. This indicates
that Surgical-MambaLLM exhibits better visual understanding, visual reason-
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ing, and localization capabilities when handling complex surgical scenes. On the
EndoVis-17 dataset, Surgical-MambaLLM outperforms all SOTA methods in Ac-
curacy and F-score, although its mIoU is a little lower than Surgical-VQLA++
[5]. This suggests that while Surgical-MambaLLM maintains strong scene un-
derstanding capabilities on the EndoVis-17 dataset, there is still room for im-
provement in localization prediction on the external validation dataset. Overall,
through quantitative evaluation, we can conclude that our Surgical-MambaLLM
possesses excellent visual reasoning and localization capabilities. Despite room
for improvement in a certain metric, its overall performance significantly out-
performs existing Surgical-VQLA methods, validating its superiority.

Ablation Studies. To validate the effectiveness of the components in our
proposed Surgical-MambaLLM model, we conduct ablation study experiments
on the EndoVis-18 and EndoVis-17 datasets, with the results presented in Ta-
ble 2. First, we evaluate the effectiveness of the CBMI module by comparing
the Baseline model with our Surgical-MambaLLM model. The baseline model
directly concatenates textual and visual features as input to the LLM, bypassing
the CBMI module. Compared to the baseline, Surgical-MambaLLM shows sig-
nificant improvements across all metrics on both datasets, confirming the efficacy
of the CBMI module.

Additionally, we explore the impact of different scanning modes on the model’s
performance by comparing M1, M2, and M3 with our Surgical-MambaLLM
model. In M1, M2, and M3, the CBMI module employs different scanning meth-
ods: M1 employs simple 1D unidirectional scan, while M2 and M3 utilize the
commonly used Bi-Scan mode [15] and Cross-Scan [19] mode. Our Surgical-
MambaLLM employs the SIP scanning mode we designed. Compared to M1,
M2, and M3, Surgical-MambaLLM achieves the best performance in terms of
Accuracy, F-Score, and mIoU, validating the effectiveness of the SIP scanning
mode.

Finally, we validate the effectiveness of Mamba2. In M4, Mamba2 is replaced
with Mamba in CBMI while maintaining the same scanning mode; in M5, we
employ the widely-used Cross-Attention [28] for feature fusion. Experimental
results demonstrate that our model achieved superior performance in terms of
accuracy, F-Score, and mIoU compared to both M4 and M5, thereby proving
the superiority of Mamba2. In summary, these ablation studies demonstrate
the critical role of each component in enhancing the overall performance of our
Surgical-MambaLLM, underscoring the benefits of the CBMI module, SIP scan-
ning mode, and Mamba2 model.

4 Conclusion

In this paper, we propose an innovative method, Surgical-MambaLLM, which is
the first method integrating the Mamba model and LLM in Surgical-VQLA. To
meet the unique characteristics of surgical scenarios, we designed the SIP scan-
ning mode to comprehensively scan surgical images, enhancing the Mamba2
model’s spatial awareness of surgical scenes. Additionally, we introduce the
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CBMI module to achieve multimodal fusion, thereby improving the model’s spa-
tial understanding and cross-modal fusion capabilities for surgical images. Ex-
periment results demonstrate that our Surgical-MambaLLM model outperforms
SOTA methods on the EndoVis17-VQLA and EndoVis18-VQLA datasets, sig-
nificantly improving the performance of the Surgical-VQLA task. Future work
will focus on improving the model’s performance on external validation sets and
further improving the grounding capability. We plan to expand the dataset, op-
timize the model architecture, and refine training strategies to better leverage
the potential of LLMs in the field of surgical robotics.
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