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Abstract. Positron Emission Tomography combined with Magnetic Res-
onance (PET-MR) imaging has emerged as a promising modality that
offers both soft tissue and biochemical function information, while sub-
stantially reducing radiation exposure compared to PET-CT imaging.
However, systematic clinical evaluations reveal notable discrepancies in
standardized uptake value ratios between PET-MR and PET-CT scans,
largely due to the inherent limitations of MR-based PET attenuation
correction. To address this issue, we propose a unified uptake correction
framework to harmonize PET-MR images with PET-CT scans across
different tracers. This framework employs a three-stage training scheme.
The first stage learns to represent CT features, aiming to capture con-
densed anatomical patterns associated with PET imaging. The second
stage aligns MR features to the fixed CT features learned in the first
stage, thereby enabling the transfer of anatomical prior knowledge from
CT to MR features. The third stage integrates aligned MR features to
guide PET-MR tracer uptake correction and uses a Multi-scale Pixel
Routing module to mitigate interference among different tracers. We
conduct comprehensive experiments on 70 patients with three distinct
tracers to demonstrate the superiority of our framework over existing
methods in PET-MR harmonization with PET-CT images. This work
represents the first investigation and solution for multi-tracer quantifica-
tion discrepancies between PET-MR and standard PET-CT, potentially
advancing the clinical standardization of PET-MR imaging. Our code
will be available at GitHub.
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1 Introduction

The integration of Positron Emission Tomography (PET) with Magnetic Reso-
nance (PET-MR) represents a revolutionary advancement in clinical molecular
imaging, attracting significant research attention and expanding clinical applica-
tions [1,2]. These hybrid systems offer distinct advantages such as superior soft
tissue contrast from MRI, reduced ionizing radiation exposure, and the capacity
for simultaneous multiparametric metabolic and anatomical assessments [3, 4].
In clinical practice, radiologists often presume quantitative equivalence between
PET-MR and PET combined with Computed Tomography (PET-CT). Conse-
quently, they routinely interpret PET-MR, images using quantification criteria
established for PET-CT, the latter being a cornerstone of molecular imaging
due to its high sensitivity and robust quantitative evaluation of physiological
and pathological processes, particularly in neurology [5-8].
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Fig. 1. Visual and statistically significant differences in standardized uptake value ratio
(SUVR) between PET-MR and PET-CT imaging across different tracers. The proposed
framework can correct PET-MR toward PET-CT to mitigate these differences.

However, systematic clinical evaluations demonstrate significant discrepan-
cies in standardized uptake value ratios (SUVRs) between PET-MR and PET-
CT across diverse tracers, as illustrated in Fig. 1. This quantitative inconsistency
may originate from vendor-specific MR-based attenuation correction (AC) meth-
ods. In PET-CT systems, the inherent correlation between X-ray attenuation co-
efficients in CT and tissue electron density ensures precise AC for reliable PET
reconstruction [9]. In contrast, MR signal intensity lacks direct associations with
electron density or atomic composition, forcing AC algorithms to estimate atten-
uation properties through segmentation or atlas-based templates. Such approx-
imations introduce systematic errors in PET quantification [2]. These discrep-
ancies, often overlooked in clinical practice, pose significant risks of diagnostic
inaccuracies when applying PET-CT-derived quantification criteria directly to
PET-MR images. Therefore, there is an urgent need to develop methods that
can correct PET-MR images toward PET-CT across different tracers.
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Image restoration (IR) using deep learning can transform low-quality med-
ical images into high-quality ones [10], serving as a feasible solution to address
the issue above. In the context of PET imaging, several studies have demon-
strated success in applying IR techniques for low-dose PET reconstruction, where
standard-dose images are restored from low-dose images [11,12]. However, these
approaches primarily focus on PET data alone, often overlooking the valuable
anatomical prior information from accompanying structural images. Further-
more, many PET restoration methods are designed for a specific tracer, leading
to significant performance degradation when applied to other tracers due to their
uptake distribution differences caused by distinct biochemical properties. Given
that different tracers are often scanned on the same PET system in clinical set-
tings, it is inefficient to deploy and maintain separate models for each tracer.
Thus, developing algorithms capable of handling multiple tracers simultaneously
is essential for clinical practice.

To address these challenges, we propose the first PET-MR tracer uptake
correction framework to harmonize PET-MR with PET-CT images across dif-
ferent tracers with a unified model by leveraging anatomical information from
structural images. Our primary contributions are summarized as follows: (1) We
develop a novel PET-MR tracer uptake correction framework, which addresses
multi-tracer quantification discrepancies between PET-MR and standard PET-
CT. (2) We improve PET-MR tracer uptake correction by leveraging aligned MR
features that incorporate imaging-related prior knowledge transferred from CT
to MR, thereby mitigating the inherent limitations of MR in PET imaging. (3)
We propose a Multi-scale Pixel Routing module to reduce interference between
different tracers by assigning conflicting tasks to distinct multi-scale network
paths. (4) Experiments demonstrate that our framework outperforms other IR
methods in PET-MR tracer uptake correction across multiple tracers, making it
a valuable tool for standardizing the quantification of PET-MR and PET-CT.

2 Method

As illustrated in Fig. 2, our method employs a three-stage training scheme to ad-
dress the quantification discrepancies between PET-MR and standard PET-CT.
Firstly, the framework performs CT feature representation learning to extract
essential anatomical information for PET reconstruction. Secondly, by using the
learned CT representations as reference patterns, the framework aligns MR fea-
tures to CT features, enabling the transfer of anatomical prior knowledge from
CT to MR features. The final stage incorporates the aligned MR features into
a U-Net architecture [13]| to perform PET-MR tracer uptake correction, and
leverages an MsPR module to mitigate interference between different tracers.
Through this systematic multi-stage training scheme, our proposed method ef-
fectively bridges the quantification gap between PET-MR and PET-CT across
multiple tracer applications.
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(a) Stage 1: CT Feature Representation

(b) Stage 2: MRI-to-CT Feature Alignment
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Fig. 2. The proposed framework adopts a three-stage training scheme: (a) CT fea-
ture representation to extract essential anatomical information, (b) MR-to-CT feature
alignment, and (¢) PET-MR tracer uptake correction with aligned MR features.

2.1 CT Feature Representation

The first stage of our method focuses on learning the CT feature representa-
tions directly associated with PET imaging, which serve as anatomical prior
knowledge for the next stage. As shown in Fig. 2(a), we utilize an Autoencoder
(AE) [14] with a Visual Transformer (ViT) architecture [15] to capture long-
range dependencies and contextual features [16] for CT image representation.
The AE first partitions each CT image into M = 1024 non-overlapping patches
and then converts them into an M x D latent representation by the encoder Fgr,
where D = 512 represents the embedding dimension. To obtain CT features, the
AE reconstructs CT images from their latent representations by the decoder
Dcr, and employs a pixel-wise ¢5 loss between the input and reconstructed CT
images. This design can capture a reliable representation of CT, thereby estab-
lishing a robust foundation for anatomical knowledge transfer in the subsequent
stage.

2.2 MR-to-CT Feature Alignment

Unlike CT images, MR images lack the tissue density information critical to
PET AC, thus introducing inevitable inaccuracies in PET reconstruction [17].
To address this limitation, we propose a feature alignment strategy that transfers
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anatomical knowledge from CT to MR, establishing a consistent structural basis
for subsequent PET-MR tracer uptake correction. As shown in Fig. 2(b), we
firstly use the pre-trained CT encoder Ecr from the first stage to generate
anatomical reference patterns For. Then we train an MRI encoder Fygr with
the same architecture to convert MR images into MR features Fyr that are
aligned with CT feature representations Fgr.

To achieve precise feature alignment, we employ a contrastive learning frame-
work instead of conventional distribution matching metrics like Kullback-Leibler
(KL) divergence [18]. Specifically, our approach enables patch-level feature align-
ment using two complementary loss terms. The positive pair loss encourages
feature correspondence between the patches from the same location in the MR
and CT images:

1o j i |
EPOS:MZ HFCT*FMRH2 ’ (1)
j=1

where F&R and FéT denote MR and CT features from the j-th patch of the
same subject, respectively. Conversely, the negative pair loss prevents spurious
alignment between non-corresponding patches:

1 M M , 2
Lieg = WM ZZ (maX(O,margin — HFéT - F]@[RHQ)) lj # K], (2)

j=1k=1

where we empirically set margin to 1.0. The final contrastive loss combines both
loss terms with equal weights.

2.3 PET-MR Tracer Uptake Correction

The network architecture of our PET Tracer Uptake correction model is illus-
trated in Fig. 2(c). It transforms the input PET-MR image into a corrected
one through several key processing stages. Initially, a shallow feature map is ex-
tracted from the input image via a 1 X 1 convolution layer and is then processed
by three consecutive CBAM blocks [19] to produce a latent representation Fj.
To incorporate anatomic guidance, we leverage the aligned MR features F\r as
the guidance to inject PET-CT characteristics into the PET-MR latent space
via a anatomic-guided block as shown in Fig. 2(d), resulting in a refined features
F,. Subsequently, a decoder reconstructs a high-resolution feature map Fy from
F, via three symmetrical CBAM blocks as well as skip connections to preserve
fine-grained details from the encoder, followed by a 1 x 1 convolution to trans-
form Fy into a residual feature map F.. The network has a refinement module
to address inter-tracer interference by the proposed Multi-scale Pixel Routing
module, which operates on F). to generate a residual image with the input image
size. The final corrected image is obtained by combining this residual image with
the input image. This stage is optimized using a composite loss function that
combines a pixel-wise /5 loss with a perceptual similarity loss Lipips-
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Multi-scale Pixel Routing As shown in Fig. 2(e), the proposed Multi-scale
Pixel Routing (MsPR) module is designed in a Mixture of Experts [20] fashion
in order to mitigate inter-tracer interference in the shared network parameters.
Considering the fine-grained nature of tracer uptake correction, MsPR module
assigns each pixel from the input PET-MR image to the most suitable expert
networks based on the routing instructions. Specifically, MsPR module imple-
ments N = 7 parallel multi-scale expert networks to process the residual feature
map F,.. The processing pipeline of each expert network starts with a spatial
upsampling with a random factor r and ends with a spatial downsampling with
factor % The sampling rates for parallel expert networks are configured as fol-
lows: r = {i, %, %, 1,2,3,4}. MsPR module generates routing instructions ¢
from the H x W x 1 input PET-MR image by encoding it into a H x W x N
feature map and applying softmax activation along the channel dimension. A
top-K (K = 4) selection mechanism is then employed to each feature vector
at different spatial locations in ¢, masking N — K values along the channel di-
mension at each spatial location. After the top-K selection, the feature maps of
different channels are used as gating maps for different expert networks. This
adaptive routing strategy allows the network to dynamically combine effective
features from different spatial locations to produce the optimal residual image
IR for different tracers, thereby enhancing uptake correction precision.

3 Experiments and Results

3.1 Dataset and Experimental Setup

Dataset. We prospectively collect imaging data from 70 patients at an anony-
mous hospital, encompassing one commonly used tracer in clinical practice, along
with two specific tracers frequently utilized in neuroimaging research: 8F-FDG
(FDG; n=20), 8F-AV1 (AV1; n=20), and '8F-PM-PBB3 (TAU; n=30). Each
patient underwent PET/CT and then immediately PET/MR scans in a single
visit to hospital. All acquired images are spatially normalized to the Montreal
Neurological Institute (MNI) 152 template and skull-stripped to isolate brain
tissue. The preprocessed 3D volumes are subsequently divided into 2D slices
and cropped to 128x128 pixels. This preprocessing pipeline produces matched
quartets of PET-MR and PET-CT images for each subject, establishing a com-
prehensive dataset for training and evaluation.

Implementation Details. To ensure a comprehensive evaluation, all exper-
iments are conducted using a five-fold cross-validation at the subject level (4
FDG, 4 AV1, and 6 TAU patients per fold) on an NVIDIA A100 GPU using
PyTorch [21]. For optimization, we employ the Adam optimizer [22] with Cosine
Annealing learning rate scheduling [23] across all three stages. Training consisted
of [200, 100, 100] epochs with initial learning rates of [I x 1074, 1x 1073, 1 x 1074
decaying to [1 x 107, 1 x 107%, 1 x 107%] using cosine annealing from epochs
[20, 10, 10], and batch sizes of [8, 8, 32] for Stages 1-3 respectively.
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Fig. 3. Qualitative comparison of our framework with other IR methods across three
tracers. The density plots display the distribution of pixel errors between corrected
images and PET-CT images, where curves closer to zero indicate superior correction.

Table 1. Quantitative comparison between our framework and other IR methods across
three tracers (FDG, AV1, and TAU). The results are in the "mean + standard devia-
tion" format with the best results marked in bold.

Model FDG AV1 TAU
PSNR SSIM% PSNR SSIM% PSNR SSIM%

PET-MR 36.1840.64 98.5940.14 | 31.4140.70 97.3940.31 | 34.5442.09 96.1810.70
SwinlR [24] 35.8110.87 98.5140.16 | 33.27+0.54 97.9910.23 | 36.02+1.87 97.2610.51
Restormer [25]| 36.27+0.57 98.38+0.12 | 33.82+0.99 97.76+0.17 | 36.254+1.67 97.1840.42
DRMC |[26] 36.4010.85 98.6610.19 | 33.4210.89 97.9810.24 | 36.4511.82 97.3110.44
AIMIR [11] 36.53+0.75 98.4840.15 | 34.07+0.92 98.0940.16 | 36.36+1.68 97.4540.41
Ours 37-39:l:0.63 98.82;}:0_13 35.00:|:1_23 98.39:}:0_18 36.98i1_59 97.69;&0,37

3.2 Comparison with SOTA Methods

To evaluate our proposed framework, we compare it with state-of-the-art (SOTA)
IR methods, including SwinIR [24], Restormer [25], DRMC [26], and AIMIR [11].
SwinIR and Restormer demonstrate robust performance in natural image restora-
tion, DRMC specializes in multi-center PET restoration, and AIMIR is tailored
for multi-modal medical image restoration. All methods are implemented as uni-
versal models to handle multiple tracers simultaneously.

Qualitative comparison results across different tracers are illustrated in Fig. 3.
For FDG and AV1, notable uptake differences in PET-MR compared to PET-
CT are observed separately in the gray matter (higher uptake) and brainstem
(lower uptake) regions. While SwinIR, and DRMC show negligible correction
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effects, Restormer and AIMIR achieve only partial correction. In contrast, our
method successfully restores appropriate uptake patterns for both tracers. For
TAU, which exhibits globally lower uptake patterns, all methods achieve certain
level of corrections but our method consistently yields the most substantial im-
provements. Quantitative results in Table 1 further corroborate the superior per-
formance of our method, as evidenced by consistently higher PSNR and SSIM
metrics across all tracers. Notably, comparative methods often exhibit tracer-
specific performance variations. For example, DRMC outperforms Restormer on
FDG but underperforms on AV1. These results indicate the capability of our
method in effectively mitigating inter-tracer interference, thereby enabling con-
sistent performance across different tracers.

Table 2. Ablation study of the key components of the proposed framework, including
(a) Structural Guidance (SG), (b) MR-to-CT Feature Alignment (M2C), (c) Multi-
scale Pixel Routing (MsPR).

Configuration FDG AV1 TAU

SG M2C MsPR|PSNR (dB) SSIMY% |PSNR (dB) SSIMY% |PSNR (dB) SSIMY%
X X 36.9240.67 98.68+0.18 | 34.52+1.12 98.27+0.16 | 36.53+1.53 97.57+0.39
X 37111065 98.7640.12 | 34.67+1.19 98.3240.22 | 36.65+1.57 97.6210.37
X 37.2510.67 98.79+0.14 | 34.80+1.20 98.36+0.18 | 36.76+£1.58 97.65+0.37
\/ 37-39:1:0.63 98.82:}:0,13 35.00;&1,23 98.39;&0,18 36.98:|:1,59 97.69:|:0,37

ENENENY

X
v
v

3.3 Ablation Study

We conduct a comprehensive ablation study to evaluate the effectiveness of our
proposed three-stage training strategy. As illustrated in Table 2, starting with
CBAM-block-based U-Net as the baseline, we sequentially integrate each key
component to quantitatively assess their contributions. The initial integration of
structural guidance from MR images without feature alignment can yield a 0.15
dB improvement in average PSNR and a 0.06% increase in average SSIM across
all three tracers, highlighting the enhancement of corrected image quality via
structural guidance. Subsequently, implementing MR-to-CT feature alignment
further boosts the model performance by increasing the average PSNR from
36.14 dB to 36.27 dB, demonstrating the effectiveness of the feature alignment
strategy in transferring useful prior information from CT to MR. Finally, the
incorporation of MsPR module brings in substantial performance gains with
an average PSNR of 36.46 dB and an average SSIM of 98.30%, showcasing the
efficacy of our proposed MsPR module in reducing inter-tracer interference.

4 Conclusion and Discussion

In this work, we present the first unified framework to address the quantification
discrepancies between PET-MR and PET-CT imaging across multiple tracers.
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It adopts a three-stage training scheme, and leverages the aligned MR features
guidance and a novel Multi-scale Pixel Routing module to effectively harmonize
PET-MR quantification with PET-CT standards regardless of inter-tracer in-
terference. Experiments demonstrate that our method consistently outperforms
existing SOTA methods in both quantitative metrics and visual quality. Future
work will focus on validating the model’s robustness across a broader range of
tracers in larger scales to further establish its clinical applicability.
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