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Abstract. Wilms’ tumor (WT) is a prevalent cancer affecting the kid-
neys of children, and accurate segmentation and prediction of metasta-
sis are vital for treatment planning and prognosis. Current methods for
assessing metastasis, such as invasive biopsies and expensive PET-CT
scans, hinder their widespread use in clinical settings. Deep learning,
especially classification models for 3D data, is currently widely used in
tumor metastasis prediction. However, existing models may not have
fully accounted for the global significance of cross-sectional slices, and
segment-assisted classification frameworks tailored for low-cost clinical
CT imaging protocols remain understudied, with systematic validation in
clinical settings yet to be comprehensively established. In this study, we
propose MT-WilmsNet, a slice-guided multi-task multi-level Transformer
fusion network featuring three synergistic components. First, a Wide Re-
inforced Transformer Feature Pyramid Network integrates multi-scale
features to boost preoperative metastasis prediction accuracy. Second,
a dedicated UNet-like architecture performs tumor segmentation while
providing anatomical context for metastasis analysis. Finally, a global
slice attention mechanism combined with multi-level self-distilling trans-
formers emulates radiologists’ cross-slice diagnostic reasoning. Our MT-
WilmsNet outperforms many typical classification models for WT metas-
tasis prediction. The source code is available at: https://github.com/
wenjing-gg/MT-WilmsNet.

Keywords: Wilms’ Tumor · Multi-task Model· Metastasis Prediction ·
Multi-level Fusion.

1 Introduction

Wilms’ tumor, the most common malignant kidney tumor in children, is clinically
diagnosed primarily through imaging examinations, including abdominal plain
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radiography, excretory urography, abdominal ultrasound, and abdominal CT or
MRI scans [6]. Among these, abdominal non-contrast and contrast-enhanced CT
scans constitute the most critical diagnostic procedures. A crucial step in WT
management is the assessment of metastasis, which currently relies on invasive
biopsies and costly PET-CT imaging [18]. However, these limitations underscore
the need for noninvasive, cost-effective alternatives. Techniques based on CT
imaging offer significant potential for improving preoperative metastasis risk
assessment, thereby optimizing treatment plans and enabling more personalized
surgical strategies.

Radiomics develops machine learning models by extracting radiographic fea-
tures from the CT scans. However, this methodology may lack the capacity to
fully harness the deep visual-semantic information inherent in CT scans, leading
to limitations in metastatic evaluation for WT. CT image processing using deep
learning typically follows one of three approaches: The 2D processing paradigm
[21,2,16], which analyzes images slice by slice, benefits from computational effi-
ciency but fails to capture spatial correlations between layers; The 3D processing
paradigm [24,20,4], which handles volumetric data in three dimensions, this ap-
proach retains complete spatial information but struggles with high memory
usage and computational complexity, lacking effective multi-tasking solutions
such as classification and segmentation for WT diagnosis and treatment as well.
The 2.5D processing paradigm [5,23,10] creates pseudo-3D inputs by combining
multiple adjacent slices. Yet, it lacks theoretical guidance on key parameters,
like the number of neighboring slices, and is ineffective at modeling cross-slice
spatial relationships [10].

To address these challenges, this paper proposes a multi-level self-distilling
Transformer fusion network for Wilms’ tumor segmentation and metastasis pre-
diction. It integrates global information with focused attention on local slices
while exploring multi-level complementary features simultaneously. The main
contributions of this work are summarized as follows: (1) A Global Slice At-
tention (GSA) module with mixed positional encoding is designed for dynamic
inter-slice relevance quantification. (2) We propose a Wide Reinforced Transform
Feature Pyramid Network (WRT-FPN) for hierarchical feature fusion, which en-
ables adaptive fusion of cross-scale semantic information while preserving spatial
resolution. (3) An UNet-like encoder-decoder is introduced for WT segmenta-
tion, which captures WT spatial structures and leverages multi-level guidance
effectively.

2 Methodology

The proposed MT-WilmsNet model, as shown in Fig. 1, consists of four main
components: the GSA module, a Hierarchical 3D-Vision Transformer backbone,
a UNet-like encoder-decoder, and the WRT-FPN module. The GSA module
integrates information across slices using high-level semantic features, mimick-
ing physicians’ attention. The Hierarchical 3D-Vision Transformer extracts dis-
criminative features through multi-head self-attention. The UNet-like encoder-
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Fig. 1. Overview of the MT-WilmsNet architecture. The student flow extracts
feature maps at each level, processes them through a feedforward network, and
generates classification outputs for auxiliary supervision. The teacher flow pro-
duces the final predictions using WRT-FPN while distilling knowledge into the
student stream to enhance its learning capability. The WRT-FPN module will
be introduced in Section 2.4.

decoder captures the tumor’s spatial structure for segmentation, while the WRT-
FPN module fuses multi-level features to address morphological differences, en-
suring accurate WT metastasis prediction.

2.1 Global Slice Attention

The GSA module is an attention mechanism designed for preprocessed the vol-
ume of interest (VOI) regions. Its structure is illustrated in Fig. 1(a). The mod-
ule’s core idea is to treat the number of channels and slices in a single-channel
3D image as virtual channels, enabling depth information extraction while dy-
namically weighting each depth slice. This approach highlights critical regions,
preserves the original 3D tensor structure, and captures global contextual in-
formation. Implementation involves a mixed positional encoding scheme that
synergistically integrates depth-aware and spatial-aware encoding components,
which are additively fused with the original image tensor. Global information
along the depth dimension is extracted through dual streams of global average
pooling and maximum pooling. After reshaping, a one-dimensional convolution
models dependencies within the depth dimension, followed by point-by-point
weighting of the original image.

2.2 Hierarchical 3D-Vision Transformer

The backbone of the proposed model is the Hierarchical 3D-Vision Transformer,
as depicted in Fig. 1(b). The input to the Hierarchical 3D-Vision Transformer
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encoder is the 3D feature map processed by the GSA module. This encoder
consists of four stages, with each stage containing two 3D-Vision Transformer
Blocks. These blocks leverage the Window-based Multi-head Self-Attention (W-
MSA) and Shifted Window-based Multi-head Self-Attention (SW-MSA) modules
to compute attention weights within the specified area. The shift operation is
efficiently computed using a 3D Periodic Shift [13]. In the first stage, a linear
embedding layer generates 3D tokens with a resolution of H

2 × W
2 × D

2 . To main-
tain the hierarchical structure, each stage concludes with a patch-merging layer,
which reduces the resolution of the feature representation by half. Specifically,
the patch-merging layer groups patches of 2× 2× 2 resolution, producing a 4C
dimensional feature embedding, where C is the number of feature channels. A
subsequent linear layer then reduces the feature size from 4C to 2C. Stages 2,
3, and 4 follow the same design, progressively downsampling the resolution to
H
4 × W

4 × D
4 , H

8 × W
8 × D

8 , and H
16 × W

16 × D
16 , enhancing the representation of

multi-level features.

2.3 UNet-like Encoder-Decoder

The task of segmenting WT serves as an agent to enhance the model’s ability to
understand the spatial structure of WT. This task is crucial because the involve-
ment of neighboring organs, local lymph node metastases, or distant metastases
reflects the tumor’s spatial shape and structural information. As depicted in Fig.
1(c), the decoder component first doubles the resolution of the encoder’s output
feature maps at each level using transposed convolutional layers. These outputs
are then residually concatenated with those from the previous stage. The con-
catenated features are processed through another residual block, as previously
described. Finally, a 1 × 1 × 1 convolutional layer was used as the segmentation
head to produce the final segmentation output, followed by a Sigmoid activation
function.

2.4 Wide Reinforced Transform Feature Pyramid Network

WT invasion and metastasis patterns can vary significantly across different spa-
tial slices. To address the multi-scale challenges inherent in WT datasets, this
study proposed WRT-FPN. As shown in Fig. 2, the WRT-FPN module com-
prises feature maps at various levels filtered and combined within the feature
selection module. Here, the Spatial Non-linear Convolutional Attention (SNCA)
module initiates the processing of the encoded feature map fin ∈ RC×D×H×W ,
where D is the data depth, H is the height, and W is the width. The WRT-FPN
enhances the spatial relationships within the feature map, intensively weights the
feature channels, and further improves spatial non-linear representation capabil-
ity through the introduced KAN [14] Linear layer. Subsequently, these enhanced
feature maps, containing high-level and low-level information from the current
and neighboring stage encoders, are processed through the Spatial Adaptive Fu-
sion (SAF) module for local feature path fusion. Finally, the classification results



Title Suppressed Due to Excessive Length 5

1x1x1 Conv

1x1x1 Conv

1x1x1 Conv

1x1x1 Conv

SNCA

SNCA

SAF

SAF

SAF

fpn_final

Stage 1

Stage 2

Stage 3

Stage 4

(b) SAF: Spatial Adaptive Fusion

lat_i+1 lat_i lat_i-1

Avg Pooling 

SNCA

1x1x1 Conv

fpn_i

(c) SNCA:Spatial Non-linear Convolutional Attention

Max Pooling Avg Pooling

Sigmoid

Concat

1x1x1 Conv

Sigmoid

Max Pooling Avg Pooling

SNCA

SNCA

(a) WRT-FPN: Wide Reinforced Transform Feature Pyramid Network 

KAN Linear

  Kolmogorov-Arnold Network LinearKAN Linear

1x1x1 Conv SNCA SAF

Fig. 2. Overview of the WRT-FPN module, where SAF is a feature fusion mod-
ule that receives inputs from the current feature value lat_i and neighboring
feature values lat_i± 1.

are derived through horizontal convolution, global pooling, and other operations
on the feature maps from the final stage.

2.5 Joint Loss Function

To effectively balance the loss across multiple subtasks during training, this study
utilizes an uncertainty-weighted composite loss function [12]. This approach is
mathematically represented in Equation (1):

Ljoint =

N∑
i=1

[
1

2σ2
i

Li + log σi

]
, (1)

where each loss component Li comprises Lcls, Lseg and Laux. A higher σi in-
dicates more significant uncertainty and difficulty in the subtask, reducing its
relative weight in total loss.

Classification Loss: To improve generalization and reduce overfitting, es-
pecially with small datasets, this study employs Label Smoothing cross-entropy
loss. This technique smooths the distribution of categories within the dataset,
with a smoothing coefficient set at 0.1.

Segmentation Loss: This study combines voxel-level cross-entropy loss
with Dice loss based on region overlap to address complex shapes and class
imbalance challenges, as shown in Equation (2):

Lseg(z,y) = α

[
− 1

NV

N∑
n=1

V∑
i=1

log(σ(zn)yn,i
)

]
︸ ︷︷ ︸

LCE

+ β

[
1− 1

NC

N∑
n=1

C∑
c=1

2
∑V

i=1 pn,c,itn,c,i∑V
i=1 pn,c,i +

∑V
i=1 tn,c,i + γ

]
︸ ︷︷ ︸

LDice

,

(2)
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where σ(·) denotes the softmax activation function, N represents the number of
samples, V denotes the number of voxels, LCE represents the standard cross-
entropy loss and LDice encapsulates the Dice similarity coefficient in a 3D con-
text. In this study, both α and β are set to 1.

Auxiliary Loss: The auxiliary loss accelerates training convergence through
self-distillation. Specifically, the composite loss function consists of two compo-
nents: (a) Student Flow: The first term is the accumulated label-smoothed cross-
entropy loss between predictions from hierarchical encoder layers and ground-
truth labels. (b) Teacher Flow Alignment: The second term employs Kullback-
Leibler (KL) divergence regularization, ensuring that the multi-layer predictions
align with the probabilistic distribution of the final output, which the teacher
model guides.

3 Experiments and Results

3.1 Dataset and Implementation

The Wilms’ tumor dataset. The scarcity of publicly available datasets hin-
ders current WT imaging studies. For instance, existing databases like SEER
[11] provide only clinical feature data without imaging information, while main-
stream medical imaging datasets, such as KiTS23 [8], focus on renal tumors
but lack detailed annotation granularity. These datasets typically distinguish
between tumors and cysts but do not include critical labels for metastatic sta-
tus, which are essential for accurate analysis. To address these limitations, we
retrospectively assembled a multi-center, annotated Wilms’ tumor CT dataset
comprising 197 postoperative pediatric cases imaged between January 2012 and
December 2024. All patients underwent contrast-enhanced abdominal CT before
any surgery, biopsy, radiotherapy, or chemotherapy. Among the initial cohort,
109 cases were metastatic and 86 non-metastatic. We excluded studies with
missing or low-quality scans (e.g., motion artifacts), preoperative treatment, or
ambiguous diagnoses. All data were anonymized for analysis. Of these, 80% were
randomly allocated for model training and 20% for testing. This study was per-
formed in line with the principles of the Declaration of Helsinki. Approval was
granted by the Academic Ethics Committee of Children’s Hospital Zhejiang Uni-
versity School of Medicine (IRB No. 2023-IRB-0287-P-01; granted 16 Nov 2023).
We have applied for an informed consent waiver for our study.

Data preprocessing. A phased VOI extraction strategy was used. In train-
ing, lesion segmentation labels guided automatic boundary extraction, expanded
by 20% to retain peri-tumoral information before standardization. During in-
ference, physicians manually outlined 3D bounding boxes based on WT imag-
ing, followed by standardization: (1) intensity normalization within [-100, 200]
Hounsfield Unit and (2) resampling to 643 voxels via spatial interpolation. This
strategy ensures spatial consistency and standardized model inputs.

Implementation details. All experiments were conducted using PyTorch
2.4.0 on an NVIDIA RTX 4090 GPU with 24 GB of memory. Our model utilized
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pre-trained weights from SwinUNETR [7], with the backbone of the original
SwinViT network frozen during training. Training proceeded for 200 epochs, op-
timized using AdamW with a weight decay of 1e-4 to prevent overfitting. We
employed a customized learning rate scheduler based on the WarmupCosineLR
strategy. The learning rate increased linearly from 1e-5 to 2e-5 during the first
10 epochs (warmup phase), then decayed to 0 via cosine annealing for the re-
maining epochs. The batch size was set to 2, but each sample underwent five
augmentation techniques—including random rotation, Gaussian noise addition,
and intensity scaling—effectively diversifying the training data and simulating
a larger batch size of 10.

3.2 Experiment Analysis

Quantitative Comparison. The proposed model’s performance is evaluated
in classification and segmentation through comparative analyses. First, we com-
pared it with traditional radiomics methods, followed by several 3D-CNN-based
networks. Finally, we benchmarked it against state-of-the-art SAM-based mod-
els. These models include MedicalNet [3], SwinUNETR [7], SAM-Med3D [19],
MAPSeg [22], VIVIT [1] and MTS-Net [9]. To ensure fairness, we used open-
source code for comparison methods with default parameters and matched data
volume to training cycles. The classification was evaluated using AUC, accu-
racy, specificity, sensitivity, and F1-score, while segmentation was assessed with
DSC, JI, ASD, and HD95, as shown in Table 1. Our method demonstrated su-
perior performance across most metrics compared to other models. While tradi-
tional radiomics methods performed poorly with multicenter data, VIVIT mod-
els without transfer learning showed the lowest classification metrics. Notably,
our approach achieved a 13% improvement in AUC for classification, surpassing
mainstream 3D image classification models. Additionally, it showed a relative
increase of at least 16% in the comprehensive F1 metric, achieving segmenta-
tion performance on par with leading models and surpassing competing methods
in overall accuracy. These results underscore the significant advancements our
approach offers in multi-task performance.

Ablation Study. To assess the effectiveness of each component within MT-
WilmsNet, we conducted experiments by training a base model and incremen-
tally adding combinations of the GSA module, multi-task architecture, and the
WRT-FPN module. The results are presented in Table 2. Our analysis of various
modules uncovered several key insights. The GSA module enhances the model’s
ability to capture the significance of each slice, boosting AUC by 4% over the
baseline. The multi-task framework enhances tumor localization, aiding metasta-
sis prediction. Notably, the WRT-FPN module significantly strengthens feature
fusion, yielding a 6% AUC gain for WT metastasis predictions, ultimately opti-
mizing overall performance.
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Table 1. Quantitative comparison with different models on the private WT
dataset. The optimal results are shown in bold, and the sub-optimal results are
underlined.
Model AUC ↑ ACC ↑ Specificity ↑ Sensitivity ↑ F1-score ↑ DSC ↑ JI↑ ASD ↓ HD95 ↓

Classification

VIVIT [1] 0.5432 0.5411 0.6444 0.3225 0.3855 \ \ \ \
Radiomics [17] 0.6414 0.5752 0.5101 0.6364 0.6222 \ \ \ \
MedicalNet [3] 0.7313 0.7013 0.7652 0.4477 0.5541 \ \ \ \
MTS-Net [9] 0.6907 0.7250 0.7222 0.7273 0.7442 \ \ \ \

Segmentation

MAPSeg [22] \ \ \ \ \ 0.8543 0.7491 4.2043 27.7468
SwinUNETR [7] \ \ \ \ \ 0.8861 0.8104 3.3934 14.6179
SAM-Med3D [19] \ \ \ \ \ 0.9225 0.8574 0.6931 2.9094

MT-WilmsNet (Ours) 0.8712 0.8501 0.7778 0.9091 0.8696 0.9231 0.8597 0.6452 2.7188

Table 2. Ablation study performance with progressively added modules.
w/o AUC ↑ ACC ↑ Specificity ↑ Sensitivity ↑ F1 Score ↑ DSC ↑ JI ↑ ASD ↓ HD95 ↓

Baseline 0.7551 0.7250 0.8333 0.6364 0.7179 \ \ \ \
+GSA 0.7904 0.7500 0.6111 0.8636 0.7917 \ \ \ \
+Multi-task 0.8157 0.8496 0.8889 0.8182 0.8571 0.9211 0.8566 0.6699 2.7753
+WRT-FPN 0.8712 0.8501 0.7778 0.9091 0.8696 0.9231 0.8597 0.6452 2.7188

3.3 Thermal Map Visualization

In this section, we utilized 3D-GradCam [15] to visualize the focus regions during
the model’s evaluation of WT metastasis. Fig. 3(a) and Fig. 3(b) illustrate the
visualization results for cases without and with metastasis, respectively. The vi-
sualization demonstrates that our model effectively concentrates on the tumor’s
edges and accurately identifies the tumor’s location. This focused attention at
the tumor’s boundaries allows the model to locate anomalies and meticulously
predict metastasis.

C

X-Slice Y-Slice Z-Slice X-Slice Y-Slice Z-Slice

(a) Cases of Wilms' tumor without metastasis (b) Cases of Wilms' tumor with metastasis

Fig. 3. Visualization of original images and heatmaps. Each row represents the
difference between the 3D data in different orientations, containing the original
voi image and the corresponding attention heat map.
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4 Conclusion

In this study, a multi-level Transformer fusion network for Wilms’ tumor seg-
mentation and metastasis prediction named MT-WilmsNet is introduced. It inte-
grates the Global Slice Attention (GSA) module for dynamic inter-slice relevance
quantification and the Wide Reinforced Transform Feature Pyramid Network
(WRT-FPN) for adaptive cross-scale semantic fusion. Additionally, a UNet-like
Encoder-Decoder leverages multi-level guidance and WT segmentation as an
auxiliary task to capture spatial structure. Comparative and ablation experi-
ments on an internal dataset demonstrate the model’s superiority and effective-
ness in WT metastasis prediction and segmentation. With further validation, we
aim to implement this approach as a supportive tool for staging prediction in
WT.
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