‘ 1is MICCAI paper is the Open Access version, providec

MICCAI

FSA-Net: Fractal-driven Synergistic
Anatomy-aware Network for Segmenting White
Line of Toldt in Laparoscopic Images

Kecheng Wu', Zhaohu Xing', Zerong Cai?, Feng Gao?, Wenxue Li', and Lei
Zhu'? =)

! The Hong Kong University of Science and Technology (Guangzhou),
Guangzhou, China
leizhu@ust.hk
2 The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
3 The Hong Kong University of Science and Technology, Hong Kong, Hong Kong

Abstract. Accurate automatic segmentation of the White Line of Toldt
(WLT) is crucial for guiding colorectal cancer surgeries and improving
patient outcomes. However, the complex anatomical structures and low
signal-to-noise ratio involved in relevant regions of WLT pose signifi-
cant challenges to existing segmentation models. Recent studies high-
light fractal dimension as a powerful tool for analyzing the complexity
of topological structures, offering an effective approach to representing
anatomical features in medical images. Building on its success, we present
the first well-annotated laparoscopic WLT segmentation (LTS) dataset
and propose FSA-Net, a fractal-driven synergistic anatomy-aware net-
work, specially designed for laparoscopic WLT segmentation. Specifi-
cally, FSA-Net consists of two core modules: the local texture-aware
convolution (LTC) module and the fractal-guided anatomy-consistent
attention (FAA) module. The LTC module adaptively adjusts the con-
volutional kernel offsets based on fractal dimensions to capture intra-
anatomical features, while the FAA module employs a fractal-driven
key-value pair filtering strategy to enhance the modeling of correlations
across inter-anatomical structures. Extensive experimental results vali-
date the effectiveness of our method. The resources will be available at
https://github.com/Bigmouth233/FSA-Net.

Keywords: Fractal Dimension - White Line of Toldt - Laparoscopic
Image Segmentation.

1 Introduction

The White Line of Toldt (WLT) is a consistent anatomical structure that marks
the junction of rectum and peritoneum, providing an avascular plane for safe
mobilization of the mesorectum. Dissection along this plane is essential in proce-
dures such as total mesorectum excision, enabling resection with minimal blood
loss while preserving critical structures like the ureter and pelvic nerve [10]. Ac-
curate identification of the WLT is essential during surgeries, as it provides vital
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Fig. 1. Statistics of our LTS dataset. (a) Several examples of our LTS dataset. (b)
Pixel value distribution histogram of our LTS dataset. (c) Pixel value distribution his-
togram of the Kvasir-SEG dataset. In (b) and (c), claybank represents the background
distribution and blue represents the foreground distribution.

guidance for intraoperative decision-making and enhances surgical outcomes.
Automatic WLT segmentation algorithms can significantly reduce the burden
on surgeons, improve the precision of rectal cancer surgeries and contribute to
improving patient prognosis.

With the advancement of deep learning-driven vision techniques [21I22I24125],
numerous algorithms have been developed for endoscopic image analysis in a
variety of clinical scenarios [T9J20127]. However, due to the absence of explicit
anatomical constraints, existing models apply a uniform processing strategy to
both target and background regions, despite the inconsistent spatial and morpho-
logical features of different anatomical structures. Consequently, these models are
prone to challenges in laparoscopic WLT segmentation, such as complex anatom-
ical structures and low-contrast targets that are more susceptible to noise.

Recent studies show that fractal geometry offers a robust theory for describ-
ing intricate and irregular anatomical features, providing an effective approach
to analyze their structural complexity [9]. Inspired by this, we envision that
fractal analysis can effectively capture the structural characteristics of various
anatomical regions in laparoscopic images, offering a powerful solution for accu-
rate segmentation of the WLT.

To this end, we propose a fractal-driven synergistic anatomy-aware network
(FSA-Net), the first to integrate fractal concepts into laparoscopic image segmen-
tation. Specifically, (1) we collect the first high-quality, well-annotated dataset
for developing WLT segmentation models. (2) In FSA-Net, we introduce a more
efficient algorithm for estimating fractal dimensions. (3) Moreover, we design
a local texture-aware convolution (LTC) module to adaptively extract intra-
anatomical cues, and a fractal-guided anatomical-consistent attention (FAA)
module to capture inter-anatomical context of various anatomical structures.
(4) Extensive experimental results on our LTS dataset and polyp segmentation
benchmarks demonstrate that our FSA-Net outperforms SOTA methods.

2 Laparoscopic WLT Segmentation (LTS) Dataset

Construction of LTS Dataset. As shown in Fig. [1] (a), we collect 1,715 la-
paroscopic images with a resolution of 1,920 x 1,080 from 145 different colorectal
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Fig. 2. Fractal analysis of different regions in laparoscopic images. According
to the box-counting theory, the dimension can be estimated by performing a linear fit
of In(N(r)) against In(r), where N(r) is the quantity of boxes and r is the diameter of
each box. (a) Comparison of estimation results across different anatomical structures.
(b) Comparison of estimation results between human and non-human structures.

cancer patients. Experienced surgeons performed pixel-level annotations to en-
sure precise delineation of the WLT. The dataset is divided into a training set
containing 1,372 images and a test set consisting of 343 images.

Dataset Analysis. The pixel value distributions of our LTS dataset and the
Kvasir-SEG dataset [6] are shown in Fig. [1f (b) and (c). Notably, the pixel value
distributions of our LTS dataset display a significant overlap, indicating a lower
contrast between the WLT and the surrounding background.

3 Method

3.1 Preliminary and Motivation

The Hausdorff dimension is a key concept in fractal geometry, providing an
effective measure of texture complexity [14], and is defined as:

§—0

H?(S) = lim inf {Z(diam U)*|SC UUi,diam U, < 5} , 0

K2

dimg (S) = inf{z > 0| H*(S) =0},

where the collection {U;} represents an arbitrary countable or finite cover of
S, and diam U; denotes the diameter of U;. The box-counting method is the
most commonly used technique for estimating fractal dimensions in practice [§].
As illustrated in Fig. 2] a preliminary fractal analysis of surgical laparoscopic
images using the box-counting method reveals obvious variations in fractal di-
mensions across different anatomical structures. Motivated by above findings, we
propose integrating fractal dimension features into our model to better capture
and exploit the distinct characteristics of various anatomical structures.

3.2 Fractal Dimension Estimation

While the box-counting method [§] is effective for estimating fractal dimensions
across different structures, the feature maps extracted by deep learning model
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Fig. 3. Architecture of the proposed FSA-Net. (a) The overview of our FSA-
Net. (b) The fractal-driven synergistic feature aggregation pipeline. It contains two core
modules, the LT'C module and the FAA module. (c) The details of the LTC module. The
LTC module use the dilated and deformable convolution for intra-anatomical feature
aggregation. (d) The details of FAA module. The FAA module adopt the proposed
key-value filtering attention to effectively extract inter-anatomical context.

backbones often have high embedding dimensions, resulting in significant com-
putational complexity. In contrast, measure-based fractal dimension estimation
methods (e.g., Rényi generalized dimension [I7]) are generally more robust when
dealing with high-dimensional data, effectively mitigating the curse of dimension-
ality associated with direct geometric covering.

To this end, we propose a novel algorithm based on the g-th order correlation
integral [I5] for estimating fractal dimensions at the pixel level of an image. The
algorithm details are shown in Algo. [I} Specifically, B(F;[h, w], €) represents the
€ x € neighborhood centered at the pixel F;[h,w], E[] denotes the mathematical
expectation operator, g is the scaling exponent which is set to 2 for computational
convenience, and Dis(+) is the distance measurement of two F; pixels:

Zf;l Te - Ye
VEC @) 2 (e

1
Dis(z,y) = —arccos +epsand z,y € I}, (2)
T

where the subscript ¢ denotes the c-th channel of the input pixel, eps is a small
constant for preventing division by zero. Given the computational complexity of
limit-based calculations, we approximate the fractal dimension by adopting the
slope of the linear function fitted between In(Cg) and In(e). We implement Algo.
in PyTorch, optimizing the process using matrix operations.
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Algorithm 1. Fractal Dimension Estimation

Require: Feature map F; with size H; x W; ; Neighborhood scale parameter ¢
Padding Size p «— |€¢/2]
FP* « Reflect Padding(F;, p)
Fractal Dimension Map D; <+— Zero Tensor of Shape 1 x H; x W;
For h € range(0, H;) do:
For w € range(0, W;) do:
R «— B(Fi[h,w],¢) and B(Fi[h,w],e) C FF*
a1 . In(CE
C; — szRgh”w) (E[Dis(z,y)TyERgh’w)]) dlf/(CC) and d((]h,w) - !1_11% (q_l()lzzé)
Dilh, w] +— d{"™
return D;

3.3 Overall Architecture

As shown in Fig. [3| (a), given an image I € R¥*#*W  we adopt Swin-S [12] as
the backbone to extract multi-scale features {F;}1 ; € RE>*HxWi The frac-
tal dimensions of these features are then estimated. Guided by these fractal
dimensions, a feature aggregation pipeline is applied to the backbone features.
Finally, the updated features are passed through the decoder [2], and the mask
P e R>HXW ig generated by the decoder head. For the loss function, we follow
the protocol described in [5].

3.4 Fractal-driven Synergistic Feature Aggregation

Fractal features effectively represent anatomical features and offer precise anal-
ysis of the microstructure of different structures. Inspired by this, we leverage
fractal information as guidance to adaptively capture both intra- and inter-
anatomical context in our model. The detailed pipeline for fractal-driven syner-
gistic feature aggregation is shown in Fig. [3| (b). For simplicity, we use the same
symbol F; to represent the backbone features within the pipeline.

Local Texture-aware Convolution (LTC) Module. The LTC module is
designed for the adaptive aggregation of intra-anatomical features of different
anatomical structures. Unlike standard DCNs, we constrain the offsets of convo-
lution kernels using anatomical knowledge embedded in fractal features, ensuring
that the model avoids learning unreasonable deformations. As shown in Fig. [3]
(c), we concatenate F; and D; as input to predict the offsets of the DCN kernel.
The offset generator consists of two 3 x 3 depth-wise separable convolution blocks
to predict the dilatation coefficients FE; € RF*XHixWi and the offset directions
A; € R2XHixWi where k is the kernel size of the DCN layer. Subsequently, E;
and A; are used to compute the final offset O; € R2+*xHix Wi The dilated and
deformable convolution then uses F; and O; to calculate the output features.
Fractal-guided Anatomical-consistent Attention (FAA) Module. We
propose a novel FAA module to effectively capture inter-anatomical reciprocal
action. The core of the FAA module is a fractal-guided key-value pair filtering
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strategy, designed to enhance the model’s ability to capture inter-anatomical
information in a divide-and-conquer manner. Specifically, we first employ a feed-
forward neural network (FFN) to transform D; into a normalized distribution
map M; € R2XHixWi Then, we extract the indexes of foreground regions (e.g.,
WLT-related regions) and background regions (e.g., surgical instruments or dis-
tal tissues in surgical field) based on M;, respectively:

z! = {(h,w)|M;[h, w] > 0.5} and T? = {(h, w)|M;[h,w] < 0.5}, (3)

where Iif represents the set of foreground indexes and Z? represents the set of
background indexes. Then, the input feature F; is flattened to obtain Fiﬂa €
RI:WixCi for the embeddings of Q, K and V. Subsequently, for each head t €
1,2,...,n, we define the projection matrices Wt‘i,Wﬁi,W‘tfli € RCix &, Taking
the foreground as an example, the core procedure of FAA can be expressed as:

n

Fllaptli pfla) 7Pt T ‘
F/ = Cat {S( L VU TWE) ) pta gy NG

\/Ci/n

where Cat(-) is the concatenation operation, S represents the Softmax function
for normalization, and |-] is the key-value pairs filtering process. The computa-
tion for the background feature F” follows a similar procedure as for Fif . Finally,

t=1

Fif and F? are concatenated, and a Conv 1 x 1 is applied for feature fusion.

4 Experiments

4.1 Datasets and Implementation Details

The LTS Dataset. Our LTS dataset consists of 1,715 laparoscopic images
from colorectal surgeries, each with a resolution of 1,920 x 1,080. The dataset is
randomly divided into a training set and a testing set at an 8:2 ratio, resulting
in 1,372 images for training and 343 images for testing.

Polyp Segmentation Benchmarks. We also conduct extensive experiments
on the polyp segmentation datasets outlined in [7], which serve as widely used
benchmarks for all types of polyp segmentation models [57]. The training set
consists of 6,925 images. We adopt the CVC-300-TV and CVC-612-V datasets
as two independent test sets to evaluate all methods, ensuring a comprehensive
assessment of segmentation performance across diverse polyp samples.
Implementation Details. The proposed FSA-Net is implemented in PyTorch
2.1.1 with CUDA 11.8. The input image is resized to 384 x 384, and a batch size
of 4 is used, with training conducted for 100 epochs on each dataset. The AdamW
optimizer is employed, along with a cosine annealing learning rate scheduler. The
initial learning rate is set to 1 x 10™%, decaying to 1 x 10~%. Data augmentation
techniques, including vertical and horizontal flipping, rotation, gamma correc-
tion, and elastic deformation, are applied to enhance model generalization. We
adopt Dice coefficient, Intersection over Union (IoU), weighted F-measure (F}’)
[13], mean absolute error (MAE), S-measure (S, ) [3], and E-measure (E,) [4] as
metrics to assess our segmentation results.
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Table 1. Quantitative comparison with SOTA methods on our LTS dataset. The best
scores are highlighted in bold and the suboptimal scores are underlined.

Methods Image Type| Venue |Years|— o Metrics
Dice 1|IoU 1| Fg' 1| Sa T | E4 T |MAE |
UNet General |MICCAI| 2015 | 0.413 | 0.305|0.363 |0.575 | 0.807 | 0.026
UNet+- General TMI | 2019 | 0.452 |0.335|0.401|0.593 | 0.830 | 0.025

ACSNet Endoscopic [MICCAI| 2020 | 0.476 | 0.353 | 0.424 | 0.606 | 0.836 | 0.024
PraNet Endoscopic |[MICCAI| 2020 | 0.511 | 0.387 | 0.482 | 0.629 | 0.884 | 0.020
TransUNet General arXiv | 2021 | 0.517 | 0.388 | 0.460 | 0.623 | 0.822 | 0.024
SCR-Net Endoscopic| AAAI |2021 | 0.443 |0.331|0.399 | 0.595|0.834 | 0.022
LDNet Endoscopic |[MICCAI| 2022 | 0.516 | 0.390 | 0.478 | 0.628 | 0.885 | 0.020
CASCADE General WACV | 2023 | 0.528 | 0.400 | 0.494 | 0.633 | 0.887 | 0.018
Swin-UMamba| General |[MICCAI| 2024 | 0.533 |0.405 [0.492|0.634 |0.877 | 0.020
I2Net General |MICCAI| 2024 | 0.489 | 0.365|0.443 | 0.614 | 0.852 | 0.022
FSA-Net Endoscopic| (Ours) | 2025 |0.557|0.428/0.507|0.650|0.902| 0.016

Table 2. Quantitative comparison with SOTA methods on polyp segmentation bench-
marks. The best scores are highlighted in bold.

UNet UNet++ ACSNet PraNet TransUNet LDNet CASCADE Swin-UMamba | FSA-Net
Datasets Metrics | MICCAI TMI MICCAI MICCAI arXiv MICCAI WACV MICCAI (Ours)
2015 2019 2020 2020 2021 2022 2023 2024 2025
Dicet | 0.639 0.649 0.738 0.739 0.824 0.835 0.844 0.850 0.878
IoUtT | 0.525 0.539 0.632 0.645 0.735 0.741 0.751 0.759 0.790
CVC-300-TV | So T 0.793  0.796  0.837 0.833 0.872 0.898 0.902 0.910 0.920
Ey, T 0.826 0.831 0.871 0.852 0.895 0.910 0.925 0.931 0.955
MAE || 0.027 0.024 0.016 0.016 0.016 0.015 0.014 0.012 0.013
Dicet | 0.725 0.684 0.804 0.869 0.861 0.870 0.878 0.875 0.888
IoUtT | 0.610 0.570  0.929  0.799 0.780 0.799 0.811 0.803 0.817
CvVe-612-V | Sy T 0.826  0.805 0.847 0915 0.893 0.918 0.920 0.915 0.930
E, T 0.855  0.830 0.887  0.936 0.921 0.941 0.942 0.946 0.962
MAE || 0.023 0.025 0.054 0.013 0.015 0.013 0.013 0.014 0.012

4.2 Comparisons with SOTA methods

WLT Segmentation. We compare our FSA-Net against ten SOTA segmen-
tation methods, including UNet [I8], UNet-++ [30], ACSNet [29], PraNet [5],
TransUNet [I], SCR-Net [23], LDNet [28], TransCASCADE [16], Swin-UMamba
[11], and I°Net |26]. As shown in Tab. |1, among all the comparison methods,
as a Mamba-based method, Swin-UMamba achieves the highest Dice and IoU
scores (0.533 and 0.405). Compared to Swin-UMamba, our FSA-Net improves
the Dice score and the IoU score by 4.50% and 5.68%, respectively. Moreover,
our approach also achieves the best performance across the other four scores by
a considerable margin. The comparison results demonstrate the advancement of
our FSA-Net among general and colonoscopic image segmentation models.

Polyp Segmentation. we further compare FSA-Net against SOTA image-
based methods on public benchmarks for polyp segmentation. Tab. [2] presents
the quantitative segmentation results on the CVC-300-TV and CVC-612-V. Our
FSA-Net achieves superior performance across nearly all metrics compared to
other methods on both datasets and demonstrates strong generalization ability.
Visual Comparisons. Fig. [ visually compares the WLT and polyp segmenta-
tion results of FSA-Net with those of six other methods. The results demonstrate
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Fig. 4. Qualitative comparison results on two samples from our LTS dataset and polyp
segmentation benchmarks with some of the SOTA methods.

Table 4. Ablation study for different feature extraction strate-
gies on LTS dataset. DCN denotes the deformable convolution and
MSA denotes the vanilla multi-head self-attention.

Table 3. Ablation study for the two different core
modules (LTC and FAA) on two datasets.

Models (LOT“CM?:i“ DiceLTTiSuU 5 ];Z;CT’GI?{JVT Models | Core Modules | Ts Fractal-driven che“f‘#w
Basic | X X 10526 0.394]0.871 0.799 Bs DCN No 0533 0.399
B v X 0539 0405|0875 0.802 Ba MSA No 0528  0.394
B, X vV 0547 0.412]0.880 0.811 Bs | DCN & MSA No 0536 0.403
FSA-Net v/ V  [0.557 0.428/0.888 0.817 FSA-Net | LTC & FAA Yes 0.557 0.428

that our method achieves more accurate recognition of the WLT region and bet-
ter detects the boundaries of polyps with irregular textures and shapes.

4.3 Ablation Study

Effectiveness of LTC and FAA Modules. We conduct ablation studies by
systematically removing each component from FSA-Net and evaluating its im-
pact on both the LTS dataset and the polyp segmentation benchmark. As shown
in Tab.[3] “Basic’ represents the baseline of our method, consisting solely of the
encoder-decoder architecture. In By, we incorporate the LTC modules, while in
Bs, we introduce the FAA modules into the “Basic’. Both By and By demon-
strate significant improvements in Dice and IoU scores on both datasets.
Effectiveness of Fractal Guidance. We further construct three additional
baseline networks: Bs, By, and Bs. As shown in Tab.[4] in Bj, we replace the LTC
module in FSA-Net with a vanilla deformable convolution module, while in By,
we replace the FAA module with a self-attention module. In Bs, we replace both
modules with their respective standard counterparts. Experimental results on the
LTS dataset reveal a notable decline in segmentation performance following these
replacements. These ablation studies emphasize the effectiveness of integrating
fractal information, demonstrating that its incorporation significantly enhances
the segmentation performance of segmentation models.

5 Conclusion

In this paper, we propose FSA-Net, the first framework for segmenting the White
Line of Toldt (WLT) in surgical laparoscopic images. First, we introduce a novel
fractal dimension estimation algorithm for accurately computing fractal dimen-
sions. Next, we propose the local texture-aware convolution (LTC) module and
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the fractal-guided anatomical-consistent attention (FAA) module to synergisti-
cally extract intra- and inter-anatomical features. Additionally, we construct the
first laparoscopic WLT segmentation (LTS) dataset to support related research.
Extensive experiments on both the LTS and polyp segmentation benchmarks
demonstrate the effectiveness of our approach.
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