‘ 1is MICCAI paper is the Open Access version, providec
MICCAI :

WDNet: A Novel Wavelet-guided Hierarchical
Diffusion Network for Multi-Target Segmentation
in Colonoscopy Images

Dongdong He![0009-0006-3410-0060] ' Fang Ma2, Ziteng Liu', Xunhai Yin®, Hao
Liu?, Wenpeng Gao'® *, Chenghong Zhang', and Yili Fu®

1 School of Life Science and Technology, Harbin Institute of Technology, Harbin,
150080, China
2 Beijing Institute of Aerospace Information, Beijing, 100000, China
3 Department of Gastroenterology, The First Affiliated Hospital of Harbin Medical
University, Harbin, 150001, China
4 State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese
Academy of Sciences, Shenyang, 110016, China
5 State Key Laboratory of Robotics and System, Harbin Institute of Technology,
Harbin, 150080, China

Abstract. Semantic segmentation in colonoscopy images is pivotal in
aiding healthcare professionals to interpret images and enhance diagnos-
tic precision. Nonetheless, the detection of polyps and instruments is
challenged by the difficulty in capturing the textures and edges of tiny
lesions, and these challenges are exacerbated by low contrast, inconsis-
tent illumination, and noise. To address these challenges, we introduce
WDNet, a network adopting a multi-tiered feature extraction and fu-
sion approach, with each encoder layer amalgamating local and global
information to construct expressive high-level representations. The input
of the network is derived from wavelet transform to dissect images into
low- and high-frequency sub-bands, utilizing learnable soft-thresholding
to diminish noise while maintaining essential features. High-frequency
data are adept at capturing details and edges, whereas low-frequency
data furnish a global context. Moreover, WDNet harnesses a diffusion-
based decoding mechanism with adaptive step sizes to amplify target
region features and mitigate background interference, achieving meticu-
lous segmentation. Comprehensive experiments conducted on a new sur-
gical dataset, along with public benchmarks underscore its remarkable
performance. WDNet not only exhibits state-of-the-art performance of
semantic segmentation in colonoscopy images with remarkable detail and
boundary accuracy but also stands out in processing speed, facilitating
the swift handling of extensive datasets. The dataset and source code
are available at https://github.com/hedongdong6060/WDNet!
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1 Introduction

Colorectal cancer (CRC) is the third most common malignant tumor globally,
following lung and breast cancer. Endoscopic polypectomy, a key intervention
for preventing CRC and reducing mortality, has become an essential skill for en-
doscopists [8]. Various polypectomy techniques and devices are used in clinical
practice, depending on regional preferences and equipment availability [5]. With
increasing pressure on medical resources, exploring sustainable practices in endo-
scopic surgery to optimize global resource allocation has become urgent [8]. Ac-
curate analysis of endoscopic images can provide surgeons with decision-making
support, including precise localization of surgical instruments and anatomical
structures, tissue feature recognition, and safety alerts [I9]. The integration of
medical robotics has significantly enhanced surgical precision and safety [21].
Robot-assisted systems reduce surgical trauma and improve stability, with com-
puter vision technologies, particularly image segmentation algorithms, playing a
critical role in locating abnormal tissues and instruments [23].

However, endoscopic image segmentation faces challenges. Variations in polyp
and instrument categories, sizes, shapes, and backgrounds complicate segmen-
tation. Existing methods struggle to comprehensively capture texture and edge
structures. Additionally, low contrast, uneven illumination, and noise in endo-
scopic images further increase segmentation difficulty. Complex surgical envi-
ronments, including smoke, blood, and reflections, make it challenging to distin-
guish instruments from tissue backgrounds, raising surgical risks [I8]. Al-based
methods show potential in medical image analysis but often lack computational
efficiency and accuracy. Models trained on static images perform poorly on real
endoscopic images [26], and existing algorithms lack the ability to model tissue-
instrument interactions, limiting their performance in complex scenarios [9].

Early polyp segmentation relied on handcrafted features, such as edge de-
tection [3], but lacked generalization. With the rise of deep learning, networks
like U-Net variants [7] became dominant, leveraging multi-scale feature extrac-
tion. Some prior works have also incorporated wavelet decomposition for feature
enhancement, such as Xnet [29] and WaveCNets [I3]. GANs and Mask R-CNN
were also applied [I]. Yue et al [25] integrated boundary uncertainty awareness
and polyp exploration into a unified framework. Recently, MM Rahman et al [15]
introduced EMCAD, a novel efficient multi-scale convolutional attention decoder
for medical image segmentation, further advancing the field. Despite progress,
challenges remain: high computational costs of complex networks hinder real-
time use, and single-target focus limits simultaneous polyp segmentation, which
is critical in clinical settings.

Surgical instrument segmentation is crucial for robot-assisted surgery, en-
abling precise localization and navigation [4]. However, complex environments
(e.g., blood, motion artifacts) pose significant challenges. In recent research, Ja-
far et al [I0] proposed a CR-Net, an Al-based encoder-decoder network for sur-
gical instrument segmentation. Nevertheless, several limitations persist: a single-
target focus, insufficient robustness under complex conditions, and inadequate
real-time performance, which hinder its broader clinical applicability. Further-
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more, while models like Diffusion-Wavelet (DiWa) [I4] address image denoising,
their effectiveness in colonoscopic segmentation needs further refinement.

To address these challenges, our study proposes a novel model architecture for
precise segmentation of abnormal tissues and surgical instruments in endoscopic
images. In summary, our primary contributions are as follows:

(1) We propose a novel network architecture integrating wavelet transform,
multi-level feature extraction and fusion, and diffusion-based feature refinement,
which captures global semantic information and local details to significantly
improve segmentation accuracy for polyps and surgical instruments while sup-
pressing noise interference.

(2) We introduce a diffusion-based feature refinement module, enabling si-
multaneous pixel-wise segmentation of polyps and surgical instruments in endo-
scopic videos. It enhances boundary clarity and reduces background interference,
effectively addressing challenges like instrument occlusion and boundary ambi-
guity.

(3) We contribute a comprehensive dataset of over 10,000 frames from 100
cases of digestive endoscopic surgeries and conduct extensive experiments on
multiple public and self-built datasets, demonstrating that our method outper-
forms state-of-the-art approaches in both segmentation accuracy and computa-
tional efficiency, showcasing its practical efficiency and reliability.

2 Method

Overview. We propose a novel network architecture, as illustrated in Fig
which integrates three core modules: wavelet transform, multi-level feature ex-
traction and fusion, and a Diffusion Feature Refinement Module. Leveraging the
time-frequency localization properties of wavelet transform, the network decom-
poses the input image into low-frequency and high-frequency sub-bands. The
low-frequency sub-band encodes global semantic information and spatial rela-
tionships, while the high-frequency sub-band captures fine-grained features such
as textures and edges. To further optimize the high-frequency sub-band, we
introduce a sparsity prior-based constraint mechanism, which amplifies target
region saliency and mitigates noise interference. In the encoder, our multi-level
feature extraction and fusion module hierarchically extracts and fuses local fea-
tures with higher-level representations. A key innovation is the introduction
of the Diffusion Feature Refinement Module, which employs an iterative opti-
mization framework based on partial differential equations to enhance boundary
clarity and reduce background interference. In the decoder, multi-scale features
are progressively fused to generate pixel-level segmentation results. Notably, our
architecture achieves simultaneous pixel-level segmentation of polyps and sur-
gical instruments in endoscopic video frames, offering a powerful solution for
real-time navigation and lesion localization in endoscopic surgery.
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Fig. 1. Proposed Network Architecture for Surgical Image Segmentation. The archi-
tecture integrates the Wavelet Transform, multi-level feature fusion, and the Diffusion
Feature Refinement Module to achieve simultaneous segmentation of polyps and sur-
gical instruments in endoscopic images.

2.1 Wavelet Transform Module

The wavelet transform decomposes input surgical images into low-frequency and
high-frequency components, extracting global structural information and local
fine-grained details. Endoscopic images often suffer from low contrast and noise,
challenging the segmentation of polyp boundaries and surgical instrument edges.
To address this, we use the Discrete Wavelet Transform (DWT) to decompose an
input image into one low-frequency sub-band (LL) and three high-frequency sub-
bands (LH, HL, HH). The low-frequency sub-band preserves the global structure
of polyps and surgical instruments, while the high-frequency sub-bands capture
edge and texture details critical for boundary delineation. The module inte-
grates and normalizes the three high-frequency sub-bands, enhancing feature
representation for the subsequent network. This hierarchical frequency-domain
fusion framework jointly models low-frequency anatomical structures and high-
frequency edge features, thus improving segmentation accuracy in complex en-
doscopic environments.

L
0
Frusea = >0 (DWTP (D) @ 3 g4 (%DWTg>(I)) (1)
=1 ke

In the formula, DWT¢®) represents the I-th level wavelet decomposition; G¢®)
denotes the low-frequency pathway; a% signifies the high-frequency component
extraction; and @ represents feature concatenation.

2.2 Diffusion Feature Refinement Module

Boundary ambiguity and specular reflections from surgical instruments are major
challenges in endoscopic image segmentation. To solve these issues, we introduce
the Diffusion Feature Refinement Module, which uses a stochastic differential
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equation (SDE)-guided diffusion process. This module iteratively refines feature
maps by enhancing boundary clarity and suppressing background interference.
The adaptive noise gating mechanism ensures the refinement process is sensi-
tive to instrument boundaries while reducing noise impact. The diffusion pro-
cess significantly improves the segmentation accuracy of polyp and instrument
boundaries, especially in challenging scenarios such as occlusion and low-contrast
regions. Leveraging the multi-scale features extracted by the encoder, DFR em-
ploys this SDE-guided diffusion process for feature regularization, providing a
robust solution to enhance segmentation performance in complex endoscopic
environments.

{ dX, = (X 1)dt + o T (X1 )dW,, te{1,...,T} o)

£3(X) = K (ReLU(BN(X)))
In the above equation, dX; describes the stochastic differential equation for

feature evolution, where fét)(Xt,l)dt represents the deterministic drift term,

and o4I'(X;_1)dW, represents the adaptive diffusion term. Here, fét) (X) is a
convolution operation, where K(!) € R3x3xCinxCin denotes the learnable con-
volution kernel, o, = 0.1 controls the noise intensity, and I'(X) = Sigmoid(X)
implements the adaptive noise gating sensitive to instrument boundaries. The
discretized iterative form is given by:

X® = ReLU (BN (/c(” « X(t_l))> F o, DX e, e ~NOI) (3)

In this formula, X ® is the feature map at layer ¢, obtained by applying the con-
volution K« X =1 to extract and transform features. The first term represents
the feature transformation, where ReLU and BN are applied to the convolution
result. The second term represents the boundary-enhanced noise, where the noise
intensity o; controls the magnitude of the Gaussian noise ¢;, and I'(X*#~1)) mod-
ulates the noise to enhance structural details.

After T' = 4 steps of diffusion, the target features are obtained through a
differentiable projection:

Cin
Y:P(X(T)):ZwbGAP(XC(T))+b, wceRCoutxlxl (4)

c=1
In this formula, Y is the final output feature map, derived from the final layer

feature map X (7). GAP summarizes spatial information, while w, projects Ci,
input channels to C,y; output channels to define the final representation.

2.3 Dual-Stream Hierarchical Feature Aggregation Module

Our model implements a dual-stream hierarchical feature aggregation mecha-
nism that combines multi-scale contextual information through cascaded non-
linear transformations. Endoscopic images often contain multi-scale structures,
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such as small polyps and large surgical instruments, requiring the network to
capture both local and global contextual information. Existing methods typi-
cally focus on single-scale features, limiting their ability to handle objects of
varying sizes and shapes. To address this, we design a dual-stream architecture
that aggregates local patterns using spatially constrained convolutions while en-
hancing semantic coherence through higher-level feature fusion. This module
enables the network to effectively handle multi-scale objects while preserving
spatial relationships between them, ensuring robust segmentation performance
across diverse endoscopic scenarios. Let X(=1) ¢ RCn>xHXW denote the input
tensor at layer [, the transformation can be formulated as:

XO = FD(XE1) where Fp, = BN(ReLu(/cg” + BN(ReLU(K” *X))))

X0 — ¢ (I(Si)()}(l))) with &() = {77() if trans.ition
I(-) otherwise
(5)
Here, IC:gk) denotes 3 x 3 convolution kernels, P(-) represents the transitional
projection implemented via 1 x 1 convolution with batch normalization, and
I(-) denotes the identity mapping . This dual-stage processing creates comple-
mentary receptive fields through:Fy,: Aggregates local patterns using spatially
constrained convolutions.Fy,: Enhances semantic coherence through nonlinear
manifold learning.

3 Experiments and Results

3.1 Datasets and Implementation Details

Datasets. To evaluate our proposed WDNet model, we found that existing
datasets lack both polyps and surgical instruments in the same endoscopic sce-
nario. To bridge this gap, we have compiled a comprehensive dataset of digestive
endoscopic surgeries, named the EndoPolyp-Instrument Dataset (EPID), which
includes both polyps and surgical instruments, totaling 10,046 data instances.
This dataset was split 7:2:1 for training, validation, and testing. To validate the
generalizability of our model, we conducted experiments on several publicly avail-
able polyp datasets: CVC_300 [3], CVC_ClinicDB [2], CVC_ColonDB [20],
ETIS [17], and Kvasir[II]. We also extended our validation to the Kvasir instru-
ment dataset [12].

Implementations. We implement our method using PyTorch and conduct
experiments on an NVIDIA RTX 3090 and an RTX 4080 Super GPU. The
AdamW optimizer is used with a learning rate of 6e-5, weight decay of le-4,
and batch size of 8. Segmentation precision is evaluated using IoU, F1 score,
Accuracy(Acc), inference speed with frame per second (FPS).
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3.2 Performance Comparison Across Methods and Datasets

The experimental results demonstrate that our method exhibits competitive per-
formance compared to several state-of-the-art (SOTA) methods. In Table [1} we
compared our method with several SOTA methods on EPID, ClinicDB, and
Kvasir. Our method achieved a mean IoU of 0.900 on EPID, outperforming other
approaches. It also achieves the highest IoU values across all datasets, with 0.951
on ClinicDB and 0.952 on Kvasir. Additionally, our method maintains a high in-
ference speed of 35 FPS on EPID, 36 FPS on ClinicDB, and 36 FPS on Kvasir.
Fig[2 presents a radar chart highlighting the performance of our method across
various metrics. Fig [3| provides qualitative results, where our predictions are
closer to the ground truth. Our method performs well in challenging scenarios,
such as when polyps are small or partially obscured by surgical instruments.
Additionally, our results show improved performance at the interaction points
of surgical instruments, indicating the potential of our approach.

Table 1. Performance Comparison on EPID and Public Datasets

EPID ClinicDB Kvasir
Methods IoU FPS| IoU FPS| IoU FPS
UNet [16] 0.748 30 |0.755 28 |0.746 28

MSNet [27] [0.852 29 [0.866 31 |0.847 29

Transunet [6] | 0.816 24 |0.849 26 [0.855 30

DCRNet [24] 0.823 19 |0.800 24 |0.772 25

Segformer [22]| 0.848 30 |0.857 30 |0.877 33

CFANet [28] [0.854 32 [0.883 32 |0.861 33

Our 0.900 35 |0.951 36 |0.952 36

0.95 MSNet DCRNet Segformer CFANet

Segformer DCRNet

Fig.2. Multi-metric com- Fig. 3. Visualization examples of segmentation re-
parison on the EPID sults by different methods on the EPID dataset.
dataset.

To evaluate the generalization ability of the proposed method, we conducted
comprehensive performance tests on both our newly constructed dataset and
multiple public datasets. Table [2] summarizes the evaluation results, including
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IoU, F1 score, accuracy, and inference speed (FPS). Our method achieved high
performance across all datasets, with IoU values ranging from 0.860 to 0.952,
F1 scores from 0.93 to 0.98, and inference speeds from 30 FPS to 37 FPS.
These results demonstrate the strong generalization capabilities of our method.
Furthermore, our novel dataset, which includes annotations for both polyps and
surgical instruments, enabled the model to enhance its feature learning ability
through a joint segmentation task.

Table 2. Performance Evaluation of WDNet on EPID and Public Datasets

Datasets IoU F1 Accuracy FPS
EPID _Dataset_ Polyp 0.9410.97 0.963 35
CVC_300 0.939 0.97 0.970 37
CVC_ ClinicDB 0.951 0.98 0.979 36
CVC_ ColonDB 0.951 097 0.979 31
ETIS LaribPolypDB 0.944 097 0973 33
Kvasir 0.952 098 0978 36
EPID_ Dataset instrument 0.860 0.93 0.884 35
Kvasir instrument 0.951 098 0.969 30

3.3 Ablation Study

As shown in Table [3] we validated each component’s effectiveness through ab-
lation experiments on EPID and Kvasir datasets. Removing the high-frequency
branch reduced IoU by 3.9% on EPID and 7.8% on Kvasir, proving the dual-
branch structure enhances cross-modal representation. Replacing the diffusion
module with conventional convolutions caused IoU drops of 6.71% on EPID and
8.4% on Kvasir, highlighting its importance for noise-robust refinement. Increas-
ing diffusion steps from 2 to 4 improved IoU by 1.17% on EPID and 4.0% on
Kvasir, while extending to 6 steps gained only 0.94% and 4.7% but reduced FPS
by 31.4% and 34.1% . This confirms the 4-step configuration optimally balances
accuracy and efficiency. The diffusion module significantly improved instrument
tip segmentation, reducing boundary ambiguity by 12% in qualitative tests.

Table 3. Ablation experiments on EPID and Public Datasets

EPID Kvasir
IoU F1 Acc FPS|IoU F1 Acc FPS
Baseline (Single Branch) 0.865 0.89 0.885 43 [0.883 0.90 0.899 43
No Diffusion Module 0.833 0.84 0.863 41 |0.868 0.88 0.863 39
Diffusion Steps=2 0.889 0.92 0.900 40 [0.912 0.93 0.927 41
Diffusion Steps=6 0.910 0.95 0.912 24 |0.959 0.97 0.969 27
Our (All Modules) 0.900 0.95 0.924 35 |0.952 0.98 0.978 36
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4 Conclusion

In this study, we propose an innovative network architecture for simultane-
ous segmentation of polyps and surgical instruments in endoscopic images. Our
model integrates wavelet transform, multi-level feature fusion, and a Diffusion
Feature Refinement Module to enhance segmentation precision. Experimental re-
sults show that our method outperforms state-of-the-art techniques on multiple
public datasets, achieving superior IoU, F1 score, and accuracy, while maintain-
ing high inference speed (FPS). Ablation studies validate the effectiveness of the
dual-branch structure, diffusion module, and cross-layer fusion.A limitation of
this work is its generalization to highly diverse and complex clinical scenarios.
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