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Abstract. Magnetic Particle Imaging (MPI), an emerging technique
with high sensitivity and resolution, requires time-consuming calibration
for System Matrix (SM)-based reconstruction. Due to the strong locality
and redundancy in the frequency domain, sparse sampling can capture
sufficient information for rapid SM calibration without full-size SMs.
However, it often leads to low-frequency energy leakage due to nonlinear
magnetization of nanoparticles, causing the loss of low-frequency compo-
nents. These components are essential for maintaining the SM’s shape,
and their absence leads to structural degradation and visible artifacts.
Current methods tend to overemphasize high-frequency features, neglect-
ing these low-frequency ones. Besides, single-step upsampling leads to
error accumulation, especially with large scaling ratios, degrading recon-
struction quality. To address these issues, we propose the Iterative Fre-
quency Restoration-Fusion Network (IFRFNet), which uses an iterative
frequency-domain restoration-fusion module. Unlike single-step upsam-
pling, our approach refines, fuses, and upsamples high- and low-frequency
features in stages, ensuring continuous optimization. This prevents error
accumulation, preserves fine details, and maintains structural integrity.
By iteratively recovering low-frequency components and refining high-
frequency details, IFRFNet minimizes artifacts and retains crucial in-
formation. The Effective Upsampler further enhances the quality of the
features, ensuring clear and realistic final SM volumes. Experiments on
the OpenMPI dataset show that IFRFNet achieves SOTA performance.
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1 Introduction

Magnetic Particle Imaging (MPI) is a tomographic imaging technique capable
of detecting the magnetism of iron oxide nanoparticles injected into the blood-
stream to produce three-dimensional images [9] [22]. In recent years, MPI has
garnered significant attention for its ability to enhance imaging resolution with-
out the use of radioactive substances. This technology has been extensively ex-
plored in various fields, including vascular imaging, cell tracking, tumor imaging,
and has achieved remarkable progress in clinical translation. Traditionally, MPI
reconstruction relies on two primary methods: X-space-based methods and sys-
tem matrix (SM)-based methods [4]. Among these, the SM-based approach offers
superior image quality but requires a highly complex and time-intensive calibra-
tion process. This process involves measuring the voxel-level response of the MPI
scanner within the field of view (FOV) to generate a complex-valued SM. For
instance, obtaining a system matrix of size 37 x 37 x 37 can take approximately
32 hours, whereas a reduced size of 9 x 9 X 9 requires only about 37 minutes.
Sparse sampling has been proposed to accelerate the calibration process, as it can
capture enough information for rapid SM calibration without the need for full-
size SMs. Despite its advantages, sparse sampling often leads to low-frequency
energy leakage due to the nonlinear magnetization of nanoparticles, which en-
ables imaging but concentrates signal energy in high frequencies, leading low-
frequency components relatively weak and easily suppressed [19]. Also, sparse
sampling cannot fully cover all spatial points [14]. These low-frequency com-
ponents are essential for preserving the overall shape and structure of the SM.
Their absence can cause structural degradation and visible artifacts, compromis-
ing the quality of the reconstructed images. Recent approaches have addressed
this issue by treating SM calibration as compressed sensing (CS) [10,11,14] and
super-resolution (SR) methods [2,12, 18] to reconstruct high-resolution images
from low-resolution SMs acquired through rapid sparse calibration, accelerat-
ing the calibration process. With the rapid development of deep learning, many
methods have been proposed for SR tasks. The SRCNN [5] was the pioneering
deep learning model applied to image super-resolution (SR) using an end-to-
end convolutional neural network (CNN). Since then, various CNN-based ap-
proaches [1,6,21] have been developed to address the SR problem. LKFN [3]
enhances feature extraction by introducing larger kernel convolutions, thus pro-
viding a wider receptive field. SMFANet [20] proposes the SMFA module, which
efficiently captures both non-local and local features to extract more representa-
tive information. Additionnally, some Vision Transformer (ViT) [7] based meth-
ods are proposed to complete variational tasks [8,17]. TTVSR [17] presents a
framework that incorporates both temporal consistency and spatial attention,
significantly improving video super-resolution by capturing temporal and spatial
dependencies efficiently. TranSMS [8] introduced a multi-scale transformer-based
architecture that captures fine-grained details across multiple scales, enhancing
the model’s ability to perform 2D SM calibration in MPI.

However, these methods often prioritize high-frequency features at the ex-
pense of low-frequency components, leading to the neglect of essential structural
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information. Furthermore, single-step upsampling methods suffer from error ac-
cumulation, especially when scaling ratios are large (e.g., 4x), which results in
the loss of fine details, increased artifacts, and difficulties in feature refinement.
Finally, although iterative upsampling has proven that can effectively alleviate
this problem [15], current methods often ignore further processing of the fea-
tures after each upsampling step, directly using coarse features. If the features
after each upsampling step are not fully optimized, the network may struggle to
extract critical information, which in turn affects the clarity and authenticity of
the final image. Additionally, errors from earlier stages can accumulate and be
magnified in subsequent stages, ultimately degrading the overall super-resolution
performance. To address the aforementioned challenges, we propose a novel fast
SM calibration framework, named the Iterative Frequency Restoration-Fusion
Network (IFRFNet). This framework employs an iterative frequency domain
feature refine module that filters both high and low-frequency domain features
while simultaneously repairing and fusing them. Subsequently, we utilize the Ef-
fective Upsampler to upsample and optimize the features, ensuring that the final
calibrated SM volumes retain both clarity and reality, effectively restoring the
overall shape.
Our main contributions are summarized as follows:

— We propose a novel attention-based frequency refinement module, termed
the Frequency Attention Module, designed to capture both global and local
features effectively. This module assigns varying weights to the extracted
frequency features, ranging from 0 to 1, reflecting their relative importance.

— We propose a novel frequency domain feature processing module, consisting
of the Frequency Filter and Frequency Refine-Fusion Module, to filter, refine,
and fusion the features with different frequencies to help better restore the
information gap between low-resolution SMs and high-resolution SMs.

— To better generate the high-resolution SMs from the low-resolution ones, we
propose an Effective Upsampler module, which could effectively upsample
restored frequency fusion features directly.

— Based on the Frequency Filter, Frequency Refine-Fusion Module, and Effec-
tive Upsampler, we propose a novel framework, for fast SM calibration on
MPI, dubbed IFRFNet, which achieves state-of-the-art (SOTA) performance
on the OpenMPI dataset, the widely used public benchmark with extensive
resources for MPI research and development.

2 Methods

2.1 Overall Architecture

The overall architecture of our proposed IFRFNet is shown in Fig. 1. Specifically,
our proposed IFRFNet consists of the following aspects: 1). The encoder, which
is used to extract the shallow feature from low-resolution SM input, consists
of two convolution blocks. 2). The iterative frequency restoration blocks. These
blocks are imported to filter high and low frequencies from the previous encoder
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Fig. 2: Details about our proposed modules.

layer first, then refine those frequencies and fuse the more precise frequencies.
Finally, an effective upsampler was proposed to upsample the refined frequencies
to the needed sizes. The number of restoration blocks equals log, U, in which
U represents the upsampling ratio. 3). The decoder block was built by a single
convolution block, to reconstruct features to the SMs with high resolution.

2.2 Frequency Filter

Following the feature extraction block, the Frequency Filter (FF) is proposed to
split features with high frequency and low frequency, details of the FF are shown
in Fig. 2 (a). Specifically, since the low frequency represents the overall shape
of the inputs, we proposed to utilize the average pooling module first to extract
the global shape information. Then, a transposed convolution is incorporated to
recover the spatial resolution of the features. Finally, a point-wise convolution
(PWC) is used to get the filtered low-frequency features, Fr,,. Details of this
process are shown in eq. 1.

Frow = PWC(TransConv(Pool(Fry))) (1)

Moreover, as shown in the eq. 2, for the high-frequency features that focus
on detailed texture information, we use element subtraction to subtract the
low-frequency features before PWC from input features, which can effectively
remove the overall shape information and separate the high-frequency features.
Afterward, similar to the low-frequency filter, we used a PWC operation to get
the final high-frequency features, dubbed Fpgp.

Frigh = PWC(Frn — TransConv(Pool(Fry))) (2)

2.3 Frequency Refine-Fusion Module

To refine and fusion the filtered frequency-domain features, we propose the Fre-
quency Refine-Fusion Module (FRFM), details are shown in Fig. 2 (b). This
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module consists of two main blocks: Frequency Attention Module (FAM), details
are shown in Fig. 2 (c), and Fusion block. Specifically, for the input frequency-
domain features, Frign and Frow, a FAM was first used to calculate the weights
for each feature. After the weights are calculated, it is multiplied with the input
frequency feature to obtain a feature map with different importances, and the
skip connection is used to add it to the original feature map to obtain the fi-
nal refined frequency domain feature map that retains the context information.
We adopt the FAM on Fiigh, Frow and the fused coarse features, therefore get
FI{Iigh7 Fljfouﬂ FIJ;usion'

FAM: To effectively capture both global and local information across chan-
nel and spatial dimensions, we propose a two-step attention mechanism on
input frequency-domain feature X. First, we introduce channel-wise attention
to compute attention weights along the channel dimension. This involves two
operations: channel average pooling (CAP) and channel max pooling (CMP).
Specifically, the resulting channel-wise vectors, W,, € RE€*1>*1x1 and W,,, €
REX1Ix1Ix1 renresent global and local features, respectively. These two vectors
are then concatenated to obtain the combined channel-wise attention weights. Fi-
nally, we apply a depth-wise convolution (DWC) to generate the final channel at-
tention output, denoted W., details of this process are shown in eq. 3. Moreover,
for the spatial dimensions, we utilize global average pooling (GAP) and global
max pooling (GMP) to compute spatial attention vectors, Wy, € RI*HxWxD
and W,,,, € RIXHXWXD ‘wwhich capture global and local spatial features, respec-
tively. These features are concatenated, and a PWC with a ReLU activation is
applied to generate the final spatial attention output, Wy, details of this process
are shown in eq. 4.

W, = DWC(Concat(CAP(z), CMP(z))) (3)

Ws = ReLu(PWC(Concat(GAP(xz), GM P(x)))) (4)

After obtaining the channel attention weights W, and spatial attention weights
Ws, we combine them through element-wise addition W = W, + Wy, followed
by a sigmoid activation Wy;ne = o(W) to normalize the values between 0 and
1. This operation ensures a balanced contribution from both channel and spa-
tial attention, improves feature selection by focusing on relevant features, and
stabilizes the learning process through normalization.

Fusion Block: To achieve effective feature integration from high-frequency
and low-frequency representations, we utilize a simple yet effective fusion block.
This block enables the integration of high-frequency and low-frequency fea-
tures and preserves complementary information from both inputs by splitting
the features and performing separate additions. Specifically, given two inputs
FIJ;igh € ROXHXWXD and Ff ¢ REXHXWXD e first split each input along

Low
the channel dimension into two equal parts:

51 gk gl 1 gl gl
Fifigh: Fitigh = Ftighl €/2 55 Filow Fiow = Flowl €/2:551 (®)
Next, we perform element-wise addition on the corresponding parts:

£ pf £ £2 _ b2 f.2
F20 = Figion T Fiow 777 = Fifign + Fliow (6)
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Finally, the fused output F(fut is obtained by concatenating F/*! and F/2
along the channel dimension:

)1 »2 CxXHXW xD
Fl . = Concat(F/', FI?) Rl e ROXHXWX (7

2.4 Effective Upsampler

The proposed Effective Upsampler, as depicted in Fig. 2 (d), is a carefully de-
signed module aimed at enhancing the resolution of input feature maps while
maintaining high-quality feature representation. The process begins with an in-
put feature map passing through a Residual-in-Residual Dense Block (RRDB) [23],
which effectively captures both local and global context features. Following this,
a transposed convolution layer (TransConv) performs upsampling to increase
the spatial resolution. Batch normalization (BN) and ReLU activation are ap-
plied to stabilize the training process and introduce non-linearity, respectively.
Subsequently, a Channel Shuffle (CS) operation reorganizes feature channels to
enhance feature interaction, followed by two parallel pathways. The first path-
way applies a Group-Wise Convolution (GWC) layer to assign channel-specific
features adaptively, while the second pathway utilizes a PWC to refine spatial
details. Finally, the outputs of the two pathways are element-wise summed, re-
sulting in the final upsampled feature map.

3 Experiments

3.1 Dataset

The OpenMPI dataset [13], the first open-source MPI dataset, has become a
widely used public benchmark with extensive resources to support MPI research
and development. This dataset includes system matrix (SM) calibration data
and phantom measurements derived from various magnetic nanoparticle (MNP)
formulations. Following standard practices [2], we specifically utilized Experi-
ment #7 of the SM calibration, which features SynomagD MNPs (Micromod
GmbH, Germany), to construct our training dataset. For testing, we used Ex-
periment #6, which includes Perimag MNP (Micromod GmbH, Germany), to
assess the generalizability of the model across different types of MNP. To ensure
the reliability and robustness of our experimental results, we applied stringent
filtering criteria, retaining only SMs with a signal-to-noise ratio (SNR) greater
than 3. This preprocessing step produced a training set of 4,129 volumes and a
test set of 3,290 volumes.

3.2 Implementation Details

Our experimental setup utilized PyTorch version 1.13.1 for all model training.
The training process was executed on a single NVIDIA RTX 4090 GPU equipped
with 24GB of memory. The models were optimized using the Adam optimizer,
initialized with a learning rate of 2.5 x 10™%, a decay factor of 0.2, and a weight
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Table 1: SM calibration results on OpenMPI dataset, with the best performing values
in bold and the second best performing values underlined.

|Ratio || 2% || 4x |
[Method [[nRMSE] (%)[|[nRMSE] (%)]
Bicubic 6.76 8.76
Trilinear 6.21 8.55
SRCNN 5] 3.88 5.70
3dSMRnet [2] 3.62 4.86
VolumeNet [16] 4.13 6.12
SMFANet [20] 4.04 5.81
LKFN (3] 3.98 6.02
Ours 3.47 4.62

decay of 5 x 10~%. Following the methodology outlined in [8], we adopted the L1
loss function, mathematically expressed as:

1N
Ll:NZ\yi*,@iL (®)
i=1

where N denotes the total number of samples, y; represents the ground truth
values, and ¢; refers to the predicted outputs.

3.3 Evaluation Metrics

We utilized three widely recognized metrics to quantitatively evaluate the per-
formance of various state-of-the-art (SOTA) models. Following the approach
adopted in prior studies [2,8], the normalized Root Mean Square Error (nRMSE)
was employed as the sole metric for SM calibration assessment. For image re-
construction evaluation, we used nRMSE alongside Peak Signal-to-Noise Ratio
(PSNR) and Structural Similarity Index Measure (SSIM).

3.4 Results

We evaluated our approach against seven SOTA models: Bicubic interpolation,
Trilinear interpolation, SRCNN, 3dSMRnet, VolumeNet, SMFANet, and LKFN.
The evaluation followed a two-step process. In the first step, we measured the
accuracy of the reconstructed SMs by comparing them to the ground truth. In
the second step, we utilized the calibrated SMs to reconstruct the measurements
of the shape and resolution phantoms in OpenMPI dataset. For consistency, the
same standard regularization parameter was applied (A = 0.75) across three
iterations.

SM Calibration Results The quantitative results of the SM calibration are
summarized in Table 1. Notably, with a scaling ratio equals 2, the proposed
IFRFNet demonstrates a remarkable improvement by reducing the normalized
Root Mean Square Error (nRMSE) by 0.15% compared to prior state-of-the-
art (SOTA) approaches. This notable enhancement underscores the accuracy
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Table 2: Image reconstruction results of Resolution phantom on calibrated SM on
OpenMPI dataset, with the best performing values in bold and the second best per-
forming values underlined.

Ratio 2X 4%

Method nRMSE(]) PSNR(T) SSIM(T) nRMSE(]) PSNR(T) SSIM(T)
Bicubic 1.93% 34.31 0.8960 8.49% 21.42 0.2181
Trilinear 1.86% 34.60 0.8634 9.64% 20.31 0.1474
SRCNN 0.78% 42.17 0.9553 5.81% 24.71 0.2374

3dSMRnet  0.75% 42.48  0.9569 2.64% 31.58  0.6201
VolumeNet  0.77% 42.28  0.9556 6.54% 23.69 0.233

SMFANet 0.77% 42.24  0.9559 5.74% 24.81  0.2482
LKFN 0.73% 42.71  0.9585 5.66% 24.94  0.2241
Ours 0.72% 42.82 0.9589 2.24% 33.00 0.7004

Table 3: Image reconstruction results of Shape phantom on calibrated SM on Open-
MPI dataset, with the best performing values in bold and the second best performing
values underlined.

Ratio 2X 4x

Method nRMSE({) PSNR(1) SSIM(1) nRMSE(}) PSNR(1) SSIM(?)
Bicubic 3.19% 29.93 0.8106 8.45% 21.46 0.3902
Trilinear 3.12% 30.12 0.7968 7.03% 23.06 0.3265
SRCNN 1.51% 36.43 0.8716 4.61% 26.72 0.4813

3dSMRnet  1.57% 36.11  0.8589 2.90% 30.75  0.6815
VolumeNet  1.50% 36.46  0.8742 5.48% 25.22  0.4241
SMFANet 1.48% 36.58  0.8768 5.48% 25.23  0.4367
LKFN 1.49% 36.56  0.8761 5.56% 25.10  0.4385
Ours 1.45% 36.78 0.8781 2.58% 31.78 0.7014

and robustness of IFRFNet in addressing moderate scaling ratios. Furthermore,
when the scaling ratio increased to 4, IFRFNet consistently maintains its su-
perior performance, achieving an additional 0.24% reduction in nRMSE. These
results highlight the versatility and adaptability of IFRFNet across varying scal-
ing ratios, reaffirming its advantage over existing methodologies.

Image Reconstruction Results We evaluated the image reconstruction per-
formance using a super-resolution calibrated SM. For image reconstruction, fol-
lowing [2], we selected the shape phantom and resolution phantom from the
OpenMPI dataset. Quantitative results of these two phantoms are shown in ta-
ble 2 and 3. Similar to results in table 1, results of image reconstruction and SM
calibration are almost consistent. Specifically, for the resolution phantom, com-
pared with the previous SOTA methods, performance of our proposed IFRFNet
can achieve (0.01%, 0.11, 0.0004) improvement on (nRMSE, PSNR, SSIM) met-
rics when the scaling ratio equals 2 and (0.40%, 1.42, 0.0803) improvement
on (nRMSE, PSNR, SSIM) metrics for ratio 4. Moreover, for the shape phan-
tom, compared with the previous SOTA methods, performance of our proposed
IFRFNet can achieve (0.04%, 0.21, 0.0013) improvement on (nRMSE, PSNR,
SSIM) metrics when the scaling ratio equals 2 and (0.32%, 1.03, 0.0199) im-
provement on (nRMSE, PSNR, SSIM) metrics for ratio 4.
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4 Conclusion

In this paper, we present a novel and efficient SM calibration framework for
MPI, termed IFRFNet. The proposed model employs the iterative strategy to
enhance the restoration of shape and resolution information in SM by effectively
filtering high- and low-frequency features and optimizing their fusion through
an attention-based mechanism. To achieve this, we first introduce a Frequency
Filter Module, which isolates low- and high-frequency features from the original
inputs. Next, we propose the Frequency Refine-Fusion Module, the core of which
includes the Frequency Attention Module (FAM) and the Fusion Block. FAM
help to refine the high- and low-frequency features extracted in the previous
stage, while a dedicated Fusion Block integrates the optimized features more
effectively. Finally, an Effective Upsampler is designed to further refine features
during the upsampling process, mitigating issues such as uneven feature distribu-
tion and cumulative error amplification. Experimental results on the OpenMPI
dataset demonstrate that IFRFNet surpasses existing methods, avoiding loss of
low-frequency information during upsampling. This work establishes a strong
foundation for future advancements and practical applications in MPI.

Disclosure of Interests. We have no conflicts of interest to disclose.
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