
EchoCardMAE: Video Masked Auto-Encoders
Customized for Echocardiography

Xuan Yang1, Rui Xu1,2,4(�), Xinchen Ye1, Zhihui Wang1, Miao Zhang1,
Yi Wang1, Xin Fan1,2, Hongkai Wang3, Qingxiong Yue4, Xiangjian He5(�), and

Yen-Wei Chen6

1 DUT School of Software Technology & DUT-RU International School of
Information Science and Engineering, Dalian University of Technology, Dalian, China

xurui@dlut.edu.cn
2 DUT-RU Co-Research Center of Advanced ICT for Active Life, Dalian, China

3 Faculty of Medicine, Dalian University of Technology, Dalian, China
4 Central Hospital of Dalian University of Technology, Dalian, China

5 School of Computer Science, University of Nottingham Ningbo China, Ningbo,
China

Sean.He@nottingham.edu.cn
6 College of Information Science and Engineering, Ritsumeikan University, Osaka,

Japan

Abstract. Echocardiography, a vital cardiac imaging modality, faces
challenges due to limited annotated data, impeding the application of
deep learning. This paper introduces EchoCardMAE, a customized masked
video autoencoder framework designed to leverage unlabeled echocar-
diography data and enhance performance across diverse cardiac tasks.
EchoCardMAE addresses key challenges in echocardiogram analysis through
three innovations built upon masked video modeling (MVM): (1) Key
Area Masking, which concentrates feature learning on the diagnosti-
cally relevant sector of the image; (2) Temporal-Invariant Alignment
Loss, promoting feature consistency across different clips of the same
echocardiogram; and (3) Reconstruction Denoising, improving robust-
ness to speckle noise inherent in echocardiography. We comprehensively
evaluated EchoCardMAE on three public datasets, demonstrating state-
of-the-art results in ejection fraction (EF) estimation, Myocardial in-
farction (MI) prediction, and cardiac segmentation. For example, on the
EchoNet-Dynamic dataset, EchoCardMAE achieved an EF estimation
MAE of 3.78 and a left ventricular segmentation mDice of 92.96, sur-
passing existing methods. The code is available at https://github.com/
m1dsolo/EchoCardMAE.
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1 Introduction

Echocardiography is a widely used non-invasive cardiac imaging modality that
provides valuable information about cardiac structure and function, and plays

https://github.com/m1dsolo/EchoCardMAE
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a key role in various clinical applications, including disease diagnosis, treatment
planning, and patient monitoring. Tasks in echocardiography, such as cardiac
structure segmentation, disease identification, and EF estimation, have always
been of great clinical significance and research value.

However, most of the current methods for echocardiography focus on specific
tasks [4] [9] [11]. Although these methods have achieved encouraging results, they
usually lack the ability to effectively utilize unlabeled data and generalization
across different tasks, which limits the performance of the model. At present,
some works have tried to train foundation models for ultrasound data [1] [7] [8],
but they primarily focus on two-dimensional ultrasound images and do not lever-
age the temporal information inherent in echocardiography, which makes them
unable to be directly applied to the field of echocardiography. Therefore, it is
necessary to construct a foundation model that contains rich spatial-temporal in-
formation of echocardiography and can be easily applied for various heart-related
tasks.

The most successful approach to training foundation models involves self-
supervised learning [19] [5]. Masked modeling, in particular, has emerged as a
powerful technique for learning general visual representations by randomly mask-
ing portions of the input data and training a model to reconstruct the missing
content [2] [6]. In the video domain, masked video modeling (MVM) [16] [17] [20] [21]
has shown promise. This paper explores the application of MVM to echocardio-
graphy. However, directly applying existing MVM methods to echocardiography
is not ideal due to the unique characteristics of echocardiograms. Echocardio-
grams present several challenges compared to natural images: (1) First, the most
relevant diagnostic information in echocardiograms is concentrated within the
central, sector-shaped region. Directly applying MVM methods designed for nat-
ural images can lead to the reconstruction of large amounts of irrelevant back-
ground information, potentially biasing the model and wasting computational
resources. (2) Echocardiograms typically encompass multiple cardiac cycles. In
downstream tasks like identification or regression, it’s often necessary to ran-
domly select a video clip as input to the network, introducing variability into
the experimental results. A lack of robustness to this variability can lead to
inconsistent performance in downstream tasks. (3) Echocardiograms are inher-
ently corrupted by speckle noise [23], which obscures subtle diagnostic features.
In the context of MVM, speckle noise can mislead the reconstruction process,
causing the model to prioritize reconstructing noise patterns rather than mean-
ingful anatomical structures and motion. This ultimately hinders the learning of
robust representations.

To address these challenges, this paper proposes EchoCardMAE, an MVM
framework specifically customized for echocardiography. EchoCardMAE incor-
porates three key innovations: (1) To improve training efficiency and focus on
diagnostically relevant regions, we implement key area masking, concentrating
the masking process on the central, sector-shaped region of the echocardiogram.
A learnable background token is also introduced to preserve positional encoding
and background context. (2) To effectively leverage temporal information and re-
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duce the sensitivity to clip selection, we propose a temporal-invariant alignment
loss. This loss encourages feature consistency across different clips of the same
echocardiogram. (3) To mitigate the effect of speckle noise, we employ a recon-
struction denoising strategy. Instead of reconstructing the original noisy patches,
the model is trained to reconstruct denoised versions, enhancing robustness to
noise and improving representation quality.

In summary, the main contributions of this paper are:

1. We introduce EchoCardMAE, a novel masked video autoencoder framework,
to address the unique challenges of echocardiogram analysis. EchoCardMAE
establishes a foundation model suitable for diverse tasks, as demonstrated
by extensive experiments on three public datasets, achieving state-of-the-art
results on multiple tasks including EF estimation, left ventricular segmenta-
tion, and myocardial infarction prediction.

2. We introduce key area masking, targeting the sector-shaped region of echocar-
diograms where diagnostic information is concentrated, to improve training
efficiency by focusing computation on the most important areas.

3. We propose a temporal-invariant alignment loss that enforces feature con-
sistency across different clips, reducing sensitivity to clip selection and im-
proving temporal representation learning.

4. We employ a reconstruction denoising strategy to mitigate the impact of
speckle noise, enhancing the model’s robustness to noise and improving rep-
resentation quality.

2 Method

2.1 EchoCardMAE Training Pipeline

EchoCardMAE leverages MVM to address the challenges of echocardiogram
analysis. The overall training pipeline is illustrated in Figure 1.

Given an unlabeled echocardiography datasetD := {Xi}Ni=1, where eachXi ∈
RT×H×W×3 represents an echocardiography video, our objective is to train an
encoder that learns generalizable representations suitable for various downstream
tasks.

For each video Xi, we generate two clips, Xi1 and Xi2, by sampling with
different starting frames. We then apply key area masking to the central sec-
tor region and input the unmasked patches to the encoder. Given the repetitive
nature of heartbeats in echocardiograms, the features Fi1 and Fi2 extracted from
Xi1 and Xi2 should exhibit temporal consistency. To enforce this, we employ a
temporal-invariant alignment loss, which reduces sensitivity to clip selec-
tion. For reconstruction, the encoder’s output is combined with learnable masked
region embeddings and a background token to maintain contextual information.
These combined features are then processed by the decoder. Finally, a recon-
struction denoising strategy is applied to enhance the model’s robustness to
noise.
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Fig. 1. Overall training pipeline of EchoCardMAE

The model is trained by minimizing the total loss, which is a weighted sum
of the L2 reconstruction loss (Lrec) and the temporal-invariant alignment loss
(Lalign), as shown in the following equation:

Ltotal = Lrec+ λLalign, (1)

where λ is a weighting factor that balances the two loss terms. In our exper-
iments, λ is set to 0.2.

The following sections provide a detailed description of these three key inno-
vations.

2.2 Key Area Masking

Based on the prior knowledge that diagnostically relevant information is con-
centrated in the central sector of echocardiograms, we introduce key area mask-
ing. This method selectively masks only the central sector, while a learnable
background token preserves positional encoding and background context. By fo-
cusing feature extraction on the diagnostically relevant sector and minimizing
computation on irrelevant regions, we significantly improve training efficiency.
We explored various masking strategies, including tube masking [17] (where en-
tire temporal tubes are masked), blockwise masking [2] (where contiguous blocks
of patches are masked), and random masking [6] (where patches are randomly
selected). Random masking yielded the best performance for echocardiograms.
We hypothesize that, at high masking ratios, random masking avoids overly diffi-
cult reconstruction tasks, leading to a smoother and more stable training process
compared to the more structured tube or blockwise masking approaches.
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2.3 Temporal-Invariant Alignment Loss

Echocardiograms inherently capture multiple cardiac cycles. To leverage this
temporal information and reduce sensitivity to clip selection [15], we introduce a
temporal-invariant alignment loss. This loss promotes feature consistency across
different clips of the same echocardiogram, leading to more robust learned rep-
resentations. Specifically, we utilize the InfoNCE loss [14], where B is the batch
size, τ is a temperature hyper-parameter set to 0.1 and Fi1 and Fi2 represent the
feature embeddings extracted from two different clips of the same i-th echocar-
diogram in the batch.

Lalign = − log

 exp(Fi1 · Fi2/τ)∑B
j=1
j 6=i

exp(Fi1 · Fj2/τ)

 (2)

2.4 Reconstruction Denoising Strategy

Echocardiograms are inherently corrupted by noise. To address this, we enhance
the model’s robustness by modifying the reconstruction target during training.
Instead of reconstructing the original noisy patches, we train the model to re-
construct denoised versions. Unlike the approach in [8], which need to denoise
the input before feeding it to the model, our method eliminates the need for
any pre-processing denoising during downstream inference, preserving real-time
performance. We evaluated different denoising techniques, including Gaussian
blur, median blur, and mean blur, and found that median blur yielded the best
results for echocardiograms, possibly because its ability to effectively remove
speckle noise in echocardiography, without overly blurring important structural
details.

3 Experiments

3.1 Settings

All experiments were conducted using a single NVIDIA TITAN RTX (24GB)
GPU and the PyTorch 2.5.1 framework. Following prior work [15], all data were
resized to a resolution of 112x112 pixels. To capture the temporal dynamics
of the heart, we randomly selected a starting frame for each echocardiography
video and then sampled every 4th frame, resulting in a clip of 16 frames as input
to the network. We chose ViT-S/16 [18] as the backbone encoder, as it offers a
favorable balance between computational efficiency and performance, making it
suitable for resource-constrained environments.

Foundation model training:
We performed foundation model training on the entirety of the training set

from EchoNet-Dynamic, the largest publicly available echocardiography dataset
(7465 echocardiography videos). Leveraging the insights from our masking strat-
egy analysis, we employed random masking with a high mask ratio of 0.75,



6 X. Yang, R. Xu, and et al.

promotes smoother and more stable training by avoiding overly difficult recon-
struction tasks. We adopted AdamW as the optimizer with a weight decay of
0.5. Using L2 as the loss function, we trained the model with a batch size of 64
for 1600 epochs, with a learning rate of 1e-4.

Fine-tuning: The encoder trained with EchoCardMAE served as the foun-
dation model for fine-tuning on three publicly available datasets. On EchoNet-
Dynamic [15], we evaluated performance on both EF estimation and left ventricle
segmentation tasks. On CAMUS [10], we evaluated performance on EF estima-
tion and segmentation of the left ventricle, myocardium, and left atrium. On
HMC-QU [3], we evaluated performance on MI prediction.

3.2 Datasets

EchoNet-Dynamic [15] is the largest publicly available echocardiogram dataset,
comprising 10,030 A4C echocardiogram videos. Each video contains multiple car-
diac cycles, with a frame size of 112x112 pixels. Each echocardiography video
is accompanied by corresponding EF and left ventricle segmentation labels. We
adhered to the data split defined in [15], with an approximate 6:1:1 ratio for
training, validation, and testing sets.

CAMUS [10] consists of 500 cardiac cycle videos (A2C and A4C views) with
EF values and segmentation results for the left ventricle, myocardium, and left
atrium. For a fair EF estimation comparison, we used only the A4C view and
the ten-fold cross-validation split from [12]. For left ventricle segmentation, we
used the official challenge test set [10] and split the remaining data into training
and validation sets (9:1).

HMC-QU [3] contains 109 A4C videos (72 with myocardial infarction and
37 normal). We follow the stratified 5-fold split provided by [13].

4 Results

4.1 Ejection Fraction Regression

This section presents a comparative analysis of EchoCardMAE against state-of-
the-art methods for EF estimation. On the EchoNet-Dynamic [15] dataset, the
largest publicly available echocardiograpy dataset, Table 1 shows that EchoCard-
MAE achieves superior performance, with a MAE of 3.78, RMSE of 4.94, and
R2 of 0.84. We further assessed the transfer learning capabilities of EchoCard-
MAE on the CAMUS dataset, evaluating performance on both Good & Medium
(G&M) and Poor (P) quality videos, following the experimental settings of [12].
As shown in Table 2, EchoCardMAE demonstrates improved transfer general-
ization compared to existing techniques.

4.2 Cardiac Segmentation

We further validated EchoCardMAE on cardiac segmentation. On EchoNet-
Dynamic, we achieved state-of-the-art left ventricle (LV) segmentation, with a
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Table 1. Performance Comparison on
EF Estimation

Method MAE RMSE R2

EchoNet [15] 4.05 5.32 0.81
EchoCoTr [13] 3.95 5.17 0.82
CoReEcho [12] 3.90 5.13 0.82
EchoMEN [9] 3.93 - -
CardiacNet [22] 3.83 - -
EchoCardMAE 3.78 4.94 0.84

Table 2. Comparison EF regression(A4C
view) with 10-fold CV

Methods G&M qual. P qual.

corr MAE corr MAE

EchoCoTr [13] 0.799 5.33 0.599 7.49
CoReEcho [12] 0.807 5.29 0.693 6.81
EchoCardMAE 0.846 5.06 0.717 5.41

mDice score of 92.96 and mIoU of 86.85 (Table 3). While performance on the
CAMUS dataset (segmenting the left ventricle, myocardium, and left atrium)
may be limited by the lower resolution of our training data, EchoCardMAE still
demonstrates strong generalization, suggesting a robust foundation for echocar-
diography analysis.

Table 3. Comparison cardiac segmentation with SOTA methods on the test set

Methods EchoNet-Dynamic CAMUS

mDice mIoU mDice mIoU

SAMUS [11] 91.79 84.32 91.11 83.94
MemSAM [4] 92.78 85.89 93.31 87.61
EchoCardMAE 92.96 86.85 92.90 87.07

4.3 Myocardial infarction Prediction

We further assessed the classification capabilities of our model by performing
a MI prediction task on the HMC-QU dataset. The results, presented in Ta-
ble 4, demonstrate that our method achieves a superior F1 score, specificity, and
accuracy compared to other methods.

Table 4. Comparison of MI classification (A4C view) with stratified 5-fold CV.

Method Sens. Spec. Prec. F1 Acc.

EchoCoTr [13] 98.57 72.50 88.37 92.96 89.77
CoReEcho [12] 92.95 86.07 93.55 92.91 90.64
EchoCardMAE 95.71 86.79 93.54 94.51 92.63
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4.4 Ablation Study

Table 5. Ablation study of three improvements of
EchoCardMAE on EchoNet-Dynamic

Key Area Mask Denoising Rec Align Loss MAE

× × × 3.8894
X × × 3.8205
X X × 3.7991
X X X 3.7768

Table 6. Comparison of dif-
ferent denoising methods on
EchoNet-Dynamic

Denoising Method MAE

Mean Blur 3.8062
Gaussian Blur 3.7839
Median Blur 3.7768

Table 5 shows the effectiveness of our three VideoMAE-based improvements
customized for echocardiography analysis. Table 6 shows the effectiveness of
different denoising methods for echocardiography analysis. Figure 2 illustrates
that employing a temporal-invariant alignment loss reduces the impact of clip
selection on EF estimation.

Fig. 2. EF variation across different clip start frames is smaller with the temporal-
invariant alignment loss. This indicates that the model’s EF estimation becomes less
sensitive to the specific starting frame of the input clip when the temporal-invariant
alignment loss is applied, leading to more robust and consistent performance.
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5 Conclusion

EchoCardMAE, a customized masked video autoencoder, addresses key chal-
lenges in echocardiography through key region masking, temporal-invariant align-
ment and reconstruction denoising strategy. Evaluations on three datasets demon-
strate state-of-the-art performance, establishing EchoCardMAE as a robust foun-
dation for cardiac applications. While the relatively long training time of the
foundation model (approximately 2 days) and the potential for improved perfor-
mance on high-resolution images represent limitations, future work will address
these areas to enhance clinical applicability.
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