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Abstract. Multiple instance learning (MIL) has become the de facto
standard approach for whole-slide image analysis in computational pathol-
ogy (CPath). While instance-wise attention tends to miss correlations
between instances, self-attention can capture these interactions, but re-
mains agnostic to the particular task. To address this issue, we intro-
duce Top-Down Attention-based Multiple Instance Learning (TDA-
MIL), an architecture that first learns a general representation from
the data via self-attention in an initial inference step, then identifies
task-relevant instances through a feature selection module, and finally
refines these representations by injecting the selected instances back into
the attention mechanism for a second inference step. By focusing on
task-specific signals, TDA-MIL effectively discerns subtle, yet significant,
regions within each slide, leading to more precise classification. Exten-
sive experiments on detecting lymph node metastasis in breast cancer,
biomarker screening for microsatellite instability in different organs, and
challenging molecular status prediction for HER2 in breast cancer show
that TDA-MIL consistently surpasses other MIL baselines, underscor-
ing the effectiveness of our proposed task-relevant refocusing and its
broad applicability across CPath tasks. Our implementation is released
at https://github.com/agentdr1/TDA_MIL.

Keywords: Computational Pathology · Multiple Instance Learning ·
Metastasis Detection· Molecular Status Prediction · Biomarker Screening

1 Introduction

Deep learning has led to significant advances in CPath, fuelled by the increasing
use of whole-slide images (WSIs). However, WSIs can exceed 100,000× 100,000
pixels at 20× magnification (1.5µm/pixel), posing significant computational
challenges. A common strategy is to partition WSIs into a sequence of man-
ageable patches (e.g., 512× 512 pixels), which are then processed into feature
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representations in an offline fashion by a vision encoding model. Increasingly,
self-supervised pretraining has shown promise in training domain-specific foun-
dation models (FMs) [3], outperforming generic counterparts (e.g., ImageNet
pretrained) [8]. However, transforming patch-level features into WSI-level pre-
dictions relies on MIL to identify and weight the most salient patches. Early MIL
methods employ instance-wise attention [7] to highlight influential patches, but
overlook contextual relationships. Recent efforts thus incorporate local neigh-
borhood attention for stronger inductive bias [12], or apply global self-attention
mechanisms to model interactions between patches [13,12,19]. Notably, a large-
scale study involving a population of over 10,000 patients demonstrated that
self-attention not only offers better performance but also faster convergence
compared to instance-wise schemes, highlighting the importance of context in
WSI analysis [19]. However, although self-attention excels at general context
modeling, vanilla formulations in vision transformers tend to focus on broadly
discriminative features rather than task-specific cues [14,15]. Moreover, pathol-
ogists in clinical practice first capture global information from WSIs and then
focus on specific regions of interest, e.g., morphological features or objects, de-
pending on the task. Motivated by the above technical and clinical observations,
we propose TDA-MIL, a two-step framework that first contextualizes all patches
via self-attention, then refines their representations through a dedicated feature
selection module. The selected task-relevant tokens are reintroduced into the
attention mechanism, further guiding the model to focus on task significant re-
gions. This top-down infusion of task-specific context enables the network to
effectively filter and contextualize up to thousands of instances, boosting the
accuracy of the final WSI-level predictions. Our main contributions are summa-
rized as follows:

(1) Novel two-step MIL architecture. We propose TDA-MIL, a coarse-to-
fine MIL framework that (I) contextualizes all patches with self-attention and
weights them through a feature-selection module, and (II) applies top-down
re-attention to focus efficiently on task-specific entities.
(2) Performance & Interpretability. TDA-MIL consistently surpasses MIL
baselines on diverse CPath benchmarks. Heat-maps show that the feature-
selection module pinpoints biomarker-specific ducts overlooked by vanilla self-
attention, providing clearer diagnostically relevant insights.

2 Method

We provide an overview of our TDA-MIL pipeline in Fig. 1. The framework
consists of an offline feature compression stage and an online aggregation stage
that leverages task-specific top-down attention strategy and the feature selection
module. Below, we detail the core components of our algorithm.

(A) Feature Compression Stage. Following standard preprocessing, the WSI
is segmented to remove background regions using Otsu’s thresholding and tessel-
lated at 20× magnification into n smaller patches, where each pi ∈ R512×512×3.
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Fig. 1. Overview of the TDA-MIL pipeline. (A) The offline feature compression
stage removes background areas, tessellates the WSI, and extracts patch-level features
via a pathology foundation model. (B) The online aggregation stage then proceeds
in two steps: (I) dimensionality reduction, self-attention-based contextualization, and
feature selection, followed by (II) injecting the selected task-relevant features back into
the self-attention mechanism for the final WSI-level prediction.

Each patch is then passed through a vision encoding FM, extracting feature
embeddings in an offline fashion. Overall, this step reduces the high-dimensional
WSIs to a tractable set of patch-level feature vectors {xi}ni=1 ∈ Rn×D, where D
is the resulting latent dimension depending on the used FM.

(B) TDA-MIL. In the online stage, TDA-MIL processes patch features via
two sequential inference steps. Given the sequence of n features {xi}ni=1, we first
project each feature from dimension D to a lower dimension d using a fully
connected (FC) layer. Subsequently, a classification token CLS ∈ R1×D is con-
catenated to the sequence. In the following, the CLS is treated as other tokens
and we continue to denote the sequence as length n for simplicity. We denote
the resulting sequence as bottom-up sequence {xi,BU}ni=1.

Inference Step I:
The sequence {xi}ni=1 is next feed through l blocks of self-attention (SA):

SA(Q,K, V ) = softmax

(
QKT

√
dk

)
V, (1)

with queries Q ∈ Rn×dk , keys K ∈ Rn×dk , and values V ∈ Rn×dv . These are
computed from x by

Q = WQ · x, K = WK · x, V = WV · x, (2)
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Fig. 2. Illustration of the internal behavior of the feature selection module.
Each element (patch of WSI) of the input sequence is compared with a learnable task
relevance token T , and the linear transformation C performs tile-wise channel rescaling.

where WQ ∈ Rd×dk , WK ∈ Rd×dk , and WV ∈ Rd×dv are learnable parameters.
Multi-head self-attention (MSA) applies self-attention in h parallel heads, then
concatenates and linearly projects them:

MSA = concat(head1, ...,headh) ·WO,

where headi = SA(Q(j),K(j), V (j)) for j ∈ {1, ..., h}

and WO ∈ Rhdv×d is learnable. A self-attention layer begins with layer nor-
malization, followed by the attention mechanism, and subsequentially with a
multi-layer perceptron (MLP). Next, the sequence enters the feature selection
module, which refines the output sequence {xi}ni=1 by identifying task-relevant
patches (dimension n) and channel rescaling (dimension d); see Fig. 2. The tile
selection process is defined as

x̂i,BU = clamp (sim (xi,BU, T )) , (3)

where sim(·, ·) denotes the cosine similarity, clamp (·) restricts values to [0, 1] and
T ∈ Rd is a learnable parameter token encoding task relevance. The top-down
sequence is then computed as

xi,TD = C · x̂i,BU · xi,BU for i ∈ {1, ..., n} (4)

where C ∈ Rd×d is learnable. As outlined in Fig. 2, the parameter T acts as a
task embedding to filter irrelevant tiles in a weighted fashion, while C performs
tile-wise channel rescaling. Finally, another MLP decodes the resulting feature
sequence {xi,TD}ni=1 before proceeding to the second inference step.

Inference Step II: The selected tiles xi,TD re-enter the self-attention (Equa-
tion 1) from Inference Step I for a second pass. To this end, the self-attention
module receives the top-down input by adding them to the values, i.e. the values
in Equation (2) are infused with information from the feature selection module
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(4). Specifically, we add xi,TD to the values V while leaving the queries Q and
keys K unchanged,

V = WV ·
(
xBU + xTD

)
,

where xBU is the bottom-up sequence as in the beginning of Inference Step I.
After self-attention, the classification token CLS is fed to a final fully connected
layer, transforming Rd to Rc for the prediction, where c is the number of classes.

3 Experiments

We evaluate the effectiveness of TDA-MIL across several key tasks CPath. Below,
we introduce the datasets, baselines, evaluation and implementation details.

3.1 Tasks, Datasets and Annotations

Overall, our study comprises 3,719 publicly available WSIs stained from HE
stained tissue of the organs breast, colon, rectum, stomach and uterine.

Metastases Detection. We use the CAMELYON17 dataset [1] for lymph node
metastasis detection in breast cancer. Following [18,6], we binarize the classes to
focus on metastasis presence versus absence (N=500; 182 positive, 318 negative).
The challenge dataset is available at camelyon17.grand-challenge.org/Data/.
MSI Screening. We use TCGA-CRC [2] (N=457; 65 positive, 392 negative) and
CPTAC-COAD [4] (N=105; 24 positive, 81 negative) to predict microsatellite in-
stability status (MSI) in colorectal cancer. TCGA-STAD involves stomach cancer
(N=361; 60 positive, 301 negative) and TCGA-UCEC uterine endometrial carci-
noma (N=545; 117 positive, 428 negative). All TCGA datasets are publicly avail-
able at portal.gdc.cancer.gov/ and CPTAC at wiki.cancerimagingarchive.net.
Molecular Status Prediction HER2. We employ TCGA-BRCA (N=693;
158 positive, 535 negative) for molecular status prediction of human epidermal
growth factor receptor 2 (HER2) in breast cancer. We further add the Breast
Cancer Needle Biopsy dataset BCNB [20] (N=1,058; 277 positive, 781 negative)
cohort, which is publicly available: paperswithcode.com/dataset/bcdalnmp.
Annotations. CAMELYON17 and BCNB provide their respective ground-truth
labels. For TCGA and CPTAC, we matched clinical labels from cbioportal.org.

3.2 Comparable Methods

We benchmark TDA-MIL against comparable MIL methods, including AB-
MIL [7] as a classic instance-wise attention baseline, CLAM [10] with clustering-
constrained attention, DSMIL [9] employing a dual-stream attention strategy,
LA-MIL [12] leveraging local attention, TransMIL [13] relying on transformer
based aggregation, GPT [21] using graph transformers, RRT-MIL [17] focusing
on feature re-embedding, MHIM [16] applying masked hard instance mining and
S4MIL [5] adopting a structured state-space approach. Baselines are retrieved
from their official repository and configured according to the published default
settings. We used the same feature compression stage (Fig. 1A) for all methods.

https://camelyon17.grand-challenge.org/Data/
https://portal.gdc.cancer.gov/
https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=70227852
https://paperswithcode.com/dataset/bcdalnmp
https://cbioportal.org
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3.3 Evaluation

We perform patient-stratified 5-fold cross-validations (CVs) for each task and
report results using the area under the receiver operating curve (AUROC) and
balanced accuracy (Bal. Acc), which accommodate class imbalances.

3.4 Implementation

Patch extraction is carried out with the CLAM library [10]. We employed the
UNI FM [3] for feature extraction, which was not pre-trained on any dataset
involved in this study and thus avoid any kind of potential data contamination
from pretraining. UNI is based on a ViT-L architecture with output dimension
1024. We used a class-weighted rescaled cross-entropy loss to remedy uneven
class distributions during the training process. Training is conducted with a
batch size of 1 using the ADAM optimizer at a learning rate of 10−5 and weight
decay of 10−2, for a maximum of 100 epochs. The learning rate is reduced by
a factor of 10 when performance plateaus for 5 subsequent epochs, and early
stopping terminates training if performance fails to improve for 10 consecutive
epochs. All experiments were performed on a single NVIDIA H100 GPU card.

4 Results

Table 1. Performance across different CPath Tasks and Datasets. Evaluation
using AUROC and balanced accuracy (Bal. Acc) metrics. Mean and standard deviation
are reported over patient-stratified CV runs. Best in bold, second best is underlined.

Task Metastases detection HER2 Status MSI Screening

Datasets CAMELYON17 TCGA-BRCA
BCNB

TCGA-CRC
CPTAC-COAD

Model/Metric AUROC Bal. Acc AUROC Bal. Acc AUROC Bal. Acc

AB-MIL [7] 94.68± 3.9 93.35± 4.8 73.30± 1.3 64.82± 2.8 91.21± 1.5 78.54± 5.7

CLAM [10] 95.79± 2.8 93.10± 4.8 73.29± 1.2 66.29± 2.4 90.87± 2.3 77.87± 4.8

DSMIL [9] 82.14± 13 78.78± 12 60.75± 6.7 59.71± 5.7 68.37± 18 65.97± 13

GPT [21] 92.60± 4.1 89.96± 5.7 67.21± 2.4 63.29± 1.9 82.02± 5.6 74.94± 7.3

LA-MIL [12] 85.81± 4.1 79.30± 5.9 72.51± 2.7 67.27± 2.7 90.02± 3.0 83.29± 3.5

MHIM [16] 95.69± 2.5 93.12± 3.1 72.36± 1.3 66.14± 1.7 89.61± 2.1 78.71± 5.2

RRT-MIL [17] 92.86± 2.9 88.75± 4.0 69.91± 1.4 63.37± 2.0 89.98± 1.8 80.56± 5.1

S4MIL [5] 90.04± 1.0 86.43± 1.1 71.45± 2.1 64.88± 2.0 89.86± 1.6 81.73± 5.6

TransMIL [13] 92.11± 1.4 87.08± 1.5 71.46± 1.8 62.95± 1.8 89.61± 1.6 77.24± 2.1

TDA-MIL 97.20 ± 1.2 93.38 ± 1.8 73.66 ± 1.1 68.62 ± 2.9 91.78 ± 2.3 86.45 ± 1.7
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Fig. 3. Evaluation of MSI Screening on TCGA-STAD and TCGA-UCEC,
and an Ablation Study. (a) MSI screening results are reported as mean of AUROC
and balanced accuracy for each method; bars show patient-stratified cross-validation
outcomes and dotted horizontal lines denote the average performance of TDA-MIL.
(b) Ablation study: replacing the feature selection module with instance-wise atten-
tion (AS) and using pure self-attention, i.e., removing TDA (w/o TDA). Results are
computed as the mean of the three tasks as in Table 1.

4.1 Performance Analysis

Table 1 reports classification performance across CPath tasks against base-
lines for CAMELYON17, Molecular status prediction of HER2 in TCGA-BRCA
and BCNB, MSI Screening in TCGA-CRC and CPTAC-COAD. Further MSI
Screening results in TCGA-STAD and TCGA-UCEC are visualized in Fig. 3a.
In metastases detection, TDA-MIL achieves with 97.20 the best AUROC with
+1.41 compared to the second best method CLAM. In Bal. Acc, TDA-MIL sur-
passes AB-MIL with a minor difference. For molecular status prediction HER2,
CLAM and LA-MIL provide the second-best results in terms of AUROC and
Bal. Acc, respectively; and TDA-MIL performs best overall. In MSI screening in
colorectal cancer, TDA-MIL achieves a Bal. Acc of 86.45 with an improvement of
3.16 over the second best LA-MIL model and outperforms AB-MIL marginally
in AUROC. However, for MSI prediction in stomach and uterine datasets RRT-
MIL and MHIM are the second-best performing methods respectively, which are
both outperformed by TDA-MIL. Overall, there is no single second-best base-
line across all tasks, while TDA-MIL consistently surpasses the task-winning
second-best approaches across various CPath tasks.

4.2 Ablation study

We measured the influence of feature selection and top-down attention in two
folds: exchange feature selection with instance-wise attention (AS) as in AB-MIL
and ablate top-down and feature selection module (w/o TDA). Fig. 3b) shows
the results for exchanging the components or ablating components. Exchanging
feature selection with instance-wise attention yields the worst performance across
tasks. Ablating the TDA and feature selection part, i.e. using pure self-attention,
decrease performance.
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Fig. 4. Attention and feature selection heatmaps for molecular status HER2.
Left to right: HE input WSI for TDA-MIL, ground truth IHC staining, heatmap of
self-attention values without injection of feature selection values, heatmap of selected
tiles from feature selection.

4.3 Qualitative Evaluation and Interpretability.

Fig. 3 shows an HE input for TDA-MIL, an IHC stained image of the same
tissue for HER2, self-attention scores and task relevant tiles computed from
the feature selection module. Samples in multi-stain are selected for clear IHC
marker visibility from external ACROBAT dataset [11]. For the feature selection
module, we visualized the normalized scores x̂i,BU as defined by Equation 3. It
can be observed that more task-relevant areas are highlighted and less artifacts
are visible in the heatmaps for selected features compared to self-attention values.

5 Conclusion

In this work, we introduced TDA-MIL, a top-down attention-based approach
that addresses a limitation of self-attention when used in MIL strategies for
whole-slide image analysis. By integrating a feature selection module with self-
attention in a two-step inference procedure, TDA-MIL learns a robust general
representation and then refocuses the model on task-relevant patches, thereby of-
fering enhanced context modeling leading to refined discriminative power. Exten-
sive evaluations in CPath tasks demonstrate its broad applicability, highlighting
the value of task-specific refinement and underscore the potential of TDA-MIL
as a generalizable framework for challenging gigapixel image analyses.
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