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Abstract. Anisotropic resolution remains a fundamental challenge in
3D microscopy, where axial resolution is significantly lower than lateral
resolution due to physical limitations. To address this, we propose a
self-supervised volume super-resolution (VSR) framework named Diffu-
sion to Resolution (D2R), which leverages 2D diffusion priors to enhance
axial resolution without requiring high-resolution (HR) volume as su-
pervision. D2R consists of three stages: (1) learning biological priors via
a 2D diffusion model trained on high-resolution XY slices, (2) gener-
ating pseudo-HR lateral (XZ/YZ) volumes through cross-plane fusion,
and (3) performing stable structure distillation to train a 3D VSR net-
work. To further improve VSR quality, we introduce Axial Enhancement
Network (AENet), a 3D VSR model incorporating lightweight channel
attention to enhance fine details while maintaining inter-slice continu-
ity. Extensive experiments on FIB-SEM datasets demonstrate that D2R-
AENet outperforms state-of-the-art self-supervised methods in both im-
age similarity and membrane segmentation accuracy, achieving perfor-
mance close to supervised approaches. These results validate the effec-
tiveness of our framework in high-fidelity volumetric reconstruction un-
der practical conditions where HR references are unavailable. Codes are
available at https://github.com/hmzawz2/D2R-models!

Keywords: Isotropic reconstruction - Diffusion models - Volume Microscopy.

1 Introduction

Recent advances in 3D microscopy, including both light microscopy (LM) and
electron microscopy (EM), have enabled high-resolution visualization of spatial
biological structures, capturing intricate cellular and subcellular architectures.
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However, a fundamental limitation of 3D microscopy imaging is its inherent
anisotropic resolution, where the axial resolution is significantly lower than the
lateral resolution due to physical limitations. This anisotropy hinders accurate
morphological analysis and downstream tasks such as membrane segmentation
and neuron reconstruction. To address this issue, volume super-resolution (VSR)
techniques have been explored to enhance axial resolution, reconstructing high-
resolution (HR) volumes from axially low-resolution (LR) 3D microscopy data.

Traditional interpolation methods, such as linear and cubic interpolation,
provide fast but blurry axial reconstruction, especially on noisy or complex bi-
ological structures. Recently, deep learning-based methods have made great ad-
vances in VSR of microscopy volumes. Supervised methods such as SRUNet[5],
generate HR and LR volumes along the axial direction using isotropic EM data
to train 3D UNet[16] network, demonstrating the feasibility of recovering HR vol-
umes from LR inputs. However, isotropic HR volumes are challenging to obtain in
practice, limiting its applicability. Recent studies predominantly utilize 2D con-
volution networks or generative models to restore independent lateral (XZ/YZ)
slices of volumes, achieving VSR along lateral directions. IsoRecon[3] leveraged a
Cycle-GAN framework to train lateral super-resolution models, offering a data-
driven approach to isotropic reconstruction. With diffusion models emerging as
powerful generative methods for image restoration tasks, DiffuseIR[15] and the
methods proposed in [8/9], offer better VSR quality empowered by diffusion mod-
els. However, since the reconstructed slices are independently processed, both
Cycle-GAN and diffusion-based methods struggle to preserve 3D continuity, of-
ten leading to misalignment artifacts and excessive inference time. Deep frame
interpolation methods, such as STDIN[I8] and vEMDiffuse-i[II], have notably
enhanced volume resolution and structure continuity along the axial direction (Z-
axis). However, these methods only perform reliably under fixed super-resolution
scaling factors or with HR volumes as supervision. Although vEMDiffuse-a [11]
supports arbitrary scaling factors without HR volumes, its axial reconstructions
suffer from lateral-axial distribution shift, leading to incorrect details. These lim-
itations underscore the need for a self-supervised VSR training framework that
intrinsically aligns cross-plane distributions while preserving 3D continuity.

To address these limitations, we propose Diffusion-to-Resolution (D2R), a
training framework for VSR in volumetric imaging. For microscopy data with
spatially isotropic structures, D2R first learns biological priors by training a 2D
diffusion model on XY slices, then transfers these priors to recover XZ/YZ slices
and synthesize pseudo-high-resolution (pseudo-HR) volumes, ensuring consistent
structural fidelity across planes. Subsequently, a 3D VSR model is trained for vol-
ume reconstruction. During training, randomly introduced structure errors from
diffusion sampling are gradually eliminated through average loss optimization,
leading the model to learn a reliable structure transformation. Additionally, we
introduce Axial Enhancement Network (AENet), a VSR network with channel
attention to enhance details while preserving inter-slice continuity by 3D con-
volution. Experiments on synthetic anisotropic EM datasets demonstrate that
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Fig. 1. An overview of the proposed D2R training framework and the AENet.

D2R-AENet achieves superior performance in similarity metrics for 8x VSR,
with results showing notable improvements in membrane segmentation tasks.
Our contributions are summarized as follows: (1) We propose D2R, a self-
supervised training framework that leverages 2D diffusion priors for 3D VSR
task. (2) We introduce AENet, a novel 3D VSR network designed to enhance
details and maintain spatial consistency across slices. (3) We evaluate synthetic
anisotropic volumetric microscopy data, showing our method outperforms other
VSR methods in reconstruction quality and membrane segmentation accuracy.

2 Proposed Method

As shown in Fig. (1), our D2R framework enables self-supervised VSR through
three stages: (I) structure prior extraction, (II) pseudo-HR volume generation,
and (III) stable structure distillation. A 2D diffusion model is first trained on XY
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slices to capture biological priors (Stage I), and then applied slice-by-slice to the
XZ/YZ planes of LR volumes to produce a pseudo-HR. volume V7 (Stage II).
To address inconsistencies from independent 2D processing, the VSR network
is trained solely on the more reliable XZ/YZ sequences of vH (Stage III). The
trained model is then applied to the input LR volume for HR inference.

2.1 Stage I: Extracting Structure Priors via 2D Diffusion

Consider an image degradation process approximated by a stochastic differential
equation (SDE), where a high-resolution image I*Y = x gradually deteriorates
into a noisy version x7, modeled as xr ~ upsample(I%) + € with € ~ N(0,62).
This degradation process follows the SDE:

dz = M (p — 2)dt + ¢pdw, (1)

where w refers to a standard Wiener process. \; and ¢; control the speed of
mean reversion and stochastic volatility, respectively. To construct a closed-
form solution of Eq. (), the state z; follows a Gaussian distribution with mean
my(x) = p+ (zo — p)e~™ and variance ny = §2(1 — e~2*¢). The reverse process
reconstructs zg by solving:

dz = [M(p — x) — ¢V, logpi(z)] dt + ¢ d, (2)

where @ denotes a reverse-time Wiener process. V, log p;(z) is estimated during
training via conditional scores V, log pi(z|xg) = —(x: — mi(x))/n¢. To stabilize
training, we reparameterize x; = my(x) + \/nyo; and approximate o, using a
network fy(-). We compute the Euclidean distance between the predicted noise
and the ground-truth noise, follows a likelihood objective to train fy:

T
L(¢) =D E[llee — (dae) gy — i l], (3)
t=0

where (dz;) s, denotes the reverse-time SDE in Eq. and its score is predicted
by the noise network fy (). zj_; = argmin,. [—(w¢-1]z,20)]. For a compre-
hensive mathematical derivation and other technical details, please refer to [12].

2.2 Stage II: Diffusion-based Pseudo-HR Volume Generation

The trained diffusion model synthesizes pseudo-high-resolution (pseudo-HR) vol-
umes by slice-wise reconstruction. For i-th low-resolution slice (1) in each or-
thogonal plane (XZ/YZ), the restoration is as follows:

I = fy (upsample(IZ, k) +¢), €~ N(0,6) (4)

where fg () represents the diffusion model from Stage I, and upsample(-, k) ap-
plies cubic interpolation to upsample the image along the Z-axis by a factor of
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k. The reconstructed slices set on both directions {17, ..., ff}{XZ/YZ} are then
concatenated along respective axes and averaged to form the pseudo-HR volume:

vH = % (concat({ff{, oy IHY 5 2) + concat({TH, ..., ff}yz)) . (5)

The pseudo-HR volume VH gerves as the training data for Stage III, where
diffusion-sampling errors are progressively filtered out during the training of
the VSR model, leading to stable structural transformations across slices in
inference.

2.3 Stage III: Stable Structure Distillation

Since the XY plane lacks explicit constraints, in Stage III, we solely train VSR
networks on lateral planes (XZ/YZ) of pseudo-HR volumes to avoid introducing
artifacts in XY direction. The network gy optimizes:

9* = argmin E(VL,VH) Hgo(vl’) — VH
6

E (6)

which forces gy to learn consensus structural transformations across noisy sam-
ples, suppressing artifacts while distilling stable structures cross slices like or-
ganelles and membranes.

Although the D2R training framework is applicable to any VSR methods,
here, we introduce Axial Enhancement Network (AENet), which performs VSR
through 3D convolutions that explicitly enforce spatial continuity and details.

AENet Details By predicting an intermediate slice I, from a 4-layer input
sequence at relative depths d, AENet enables flexible VSR scaling factors r
through slice-wise estimation fi/r = go(I1.a,1/7),i € {1,...,r — 1}. As shown
in Fig. e), it employs 3D convolutions with relative depth encoding to enforce
axial continuity, with a lightweight 3D channel attention module [2] enhances
fine details as follows:

fo=0c(W -pool(f; + b)) ® f; (7)

where f; and f, denote input/output 3D features, W € R“*® and b € RY
are learnable parameters. As AENet employs 3D ResNet as backbone, it equips
with multiscale skip connections to facilitate feature fusion, and the decoder
refines predictions via transposed convolutions. This design ensures high-fidelity
reconstruction while maintaining computational efficiency in VSR task.

Loss Function The loss function combines loss for structural fidelity and loss for
high-frequency details:

Liotal = L1 + AssimLssiv + ArrLLFFL, (8)

where L; and Lggmy preserve low-frequency structures and Lggy, [6] prioritize
high-frequency detail recovery through gradient-aware focal modulation. In our
experiments, we set Agsitm = 1 and Appr, = 100, balancing the low-frequency
and high-frequency details in microscopy slices.
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Inference As illustrated in Fig. 1(d), during inference, the trained AENet model
processes the input LR volume V¥ along the Z-axis using a sliding window.
At each step, it takes a sequence of adjacent XY slices (e.g., 4 in AENet) and
inserts (r—1) intermediate slices between the central slice pair, where r is the
super-resolution factor. The original and predicted slices are then concatenated
to reconstruct the output HR volume V.

3 Experiments

3.1 Datasets and implement details

To simulate realistic anisotropic EM imaging, we simulate LR volumes by re-
taining every r-th axial slice (r = 8) from the original HR volumes, preserving
voxel independence and original noise distribution. This slice sampling strategy
avoids structure blending and noise suppression in average downsampling [11].
Experiments use two public FIB-SEM datasets: FIB-25 [I7]: Drosophila vi-
sual circuits (10 nm isotropic resolution); EPFL [I]: Mouse hippocampus (5 nm
isotropic resolution). Downsampling yields LR volumes with 80 nm (FIB-25) and
40 nm (EPFL) axial resolution. Each dataset is partitioned into training (70%),
validation (15%), and test (15%), with non-overlapping subvolumes reserved for
resolution analysis and downstream tasks. During testing, all methods recon-
struct subvolumes to fully assess restoration capability from XY /XZ/YZ planes.
AENet is trained using ADAM [7], with an initial learning rate of 2 x 1074,
halved when training plateaus. After 60 epochs, the best model on validation
dataset is selected. All experiments run on a server with an Nvidia V100 GPU.

3.2 Comparison with VSR Methods

We evaluate AENet against bicubic interpolation (as baseline) and other SOTA
VSR methods, including methods trained with HR, volumes as supervision (SRUNet
[5], vEMDiffuse-i[I1]) and methods that perform VSR using only LR volumes
(IsoVEM [4], vEMDiffuse-a[I1] and Lee et al.|8], list as self-supervised methods).
To validate the adaptability of the D2R framework, we use it to train SRUNet
(D2R-SRUNet) and propose two variants of AENet: Sup-AENet, trained with
HR volume supervision, and D2R-AENet, which is trained with D2R framework.

Quantitative Evaluation Table [I| presents the evaluation results based on
image similarity and estimated resolution of reconstructed subvolumes. Restora-
tion results demonstrate our D2R framework is highly adaptable, enabling self-
supervised training while maintaining strong performance. Notably, both D2R-
SRUNet and D2R-AENet achieve results comparable to their supervised counter-
parts. In contrast, vEMDiffuse[11] show notable degradation when transitioning
from supervised (VEMDiffuse-i) to self-supervised (VEMDiffuse-a), underscoring
the effectiveness of our D2R framework in training VSR networks.
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Table 1. Quantitative evaluation on FIB-25 and EPFL datasets with supervised (Sup.)
and self-supervised (Self-sup.) methods. Bold /underline indicate best/second-best.

\ PSNR(?) \ SSIM(1) \ Reso.

(]
E‘ Qéi‘ Methods
g‘&‘ | XY XZ YZ | XY XZ YZ | (nm)|
| SRUNet 5] 27.01 27.24 27.25]0.6942 0.7193 0.7073 | 45.49
2| vEMDiffuse-i [I1] {25.86 26.16 26.16 | 0.6292 0.6331 0.6185 | 57.75
Sup-AENet (ours) |27.89 28.24 28.24/0.7202 0.7442 0.7315| 44.31
o Baseline 23.05 22.60 22.69|0.5183 0.5056 0.4917 | 57.11
gl s| IsoVEM [ 24.67 24.96 24.96|0.5952 0.6332 0.6161 | 54.68
=|Z| Leeetal [B] |25.53 25.87 25.870.5700 0.6088 0.5939 | 59.08
= | vEMDiffuse-i [T1] | 23.38 23.74 23.74|0.5072 0.5192 0.5033 | 63.46
2| D2R-SRUNet |27.01 27.24 27.24|0.6895 0.7045 0.6919 | 43.93
D2R-AENet (ours)|27.64 27.83 27.83|0.7023 0.7070 0.6930| 46.73
<|  SRUNet [5] 25.79 26.18 26.18]0.6335 0.6837 0.6619 | 23.80
2| vEMDiffuse-i [T1] {24.88 25.41 25.41[0.5501 0.5986 0.5733 | 27.05
Sup-AENet (ours) |26.35 26.89 26.90/0.6402 0.6861 0.6634| 21.97
g Baseline 22.22 22.29 22.30|0.4328 0.4464 0.4261 | 31.73
= z| IsoVEM [4] 23.43 23.89 23.89|0.4968 0.5582 0.5290 | 27.63
%5 Lee et al. [§] |24.38 24.92 24.92(0.5035 0.5654 0.5396 | 27.64
= | vEMDiffuse-a [I1] | 23.25 23.73 23.73|0.4965 0.5302 0.5056 | 30.60
@ D2R-SRUNet |25.54 25.99 25.99 |0.6187 0.6491 0.6470| 24.95
D2R-AENet (ours)|26.43 26.63 26.63|0.6245 0.6445 0.6365 | 22.95

The proposed AENet achieves superior performance in both supervised and
self-supervised setting, outperforming all VSR methods that rely on supervision
and significantly surpassing existing self-supervised approaches when integrated
with the D2R framework as D2R-AENet. Resolution analysis via Fourier Shell
Correlation (FSC) [I4] further confirms that D2R-trained models reach resolu-
tion levels comparable to supervised methods, with D2R-SRUNet even exceeding
its supervised counterpart in some cases.

Membrane Segmentation Comparison. To assess the impact of VSR on
downstream analysis, we evaluate membrane segmentation performance using a
public pre-trained model [20] without fine-tuning. The model is applied to re-
constructed volumes, and segmentation accuracy is measured via Intersection
over Union (IoU)[2I], adapted Rand error (ARE)[10], and Variation of Informa-
tion (VoI)[I3], with membrane segmentation on ground truth volumes as refer-
ence. As shown in Table 2] AENet consistently achieves top-tier segmentation
performance across both training settings. Similar to Sec[3.2] vEMDiffuse under-
goes notable performance drops when shifting from supervised to self-supervised
training, whereas AENet maintains stability. These results further validate the
robustness of our approach in VSR and its effectiveness in producing high-fidelity
reconstructions for downstream tasks.
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Table 2. Membrane segmentation accuracy with supervised (Sup.) and self-supervised
(Self-sup.) methods using different metrics. Bold/underline indicate best/second-best.

2| \ FIB-25 \ EPFL
£ Methods
=] [1oU (1)[ARE ({)|Vol ()[IoU (1)|ARE ({)|Vol (1)

SRUNet[5] 0.6153 | 0.3504 | 0.6696 | 0.6968 | 0.2732 | 0.5704
vEMDiffuse-i[11] |0.6472 | 0.3149 |0.6129 | 0.7533 | 0.2199 | 0.4918
Sup-AENet (ours) |0.6874| 0.2753 [0.5566|0.7604| 0.2133 [0.4808

Baseline 0.5383 | 0.4304 |0.7689|0.5337 | 0.4387 |0.7834
vEMDiffuse-a[11] | 0.5818 | 0.3850 | 0.7149 | 0.6663 | 0.3053 | 0.6238
IsoVEM[4] 0.5970 | 0.3709 | 0.7005 | 0.6541 | 0.3191 | 0.6480
Lee et.al[g] 0.6143 | 0.3445 | 0.6406 | 0.7093 | 0.2591 |0.5413
D2R-SRUNet [0.6779| 0.2844 |0.5693| 0.6847 | 0.2840 | 0.5823
D2R-AENet (ours)| 0.6676 | 0.2936 | 0.5795 |0.7462| 0.2261 |0.4999

Sup.

Self-sup.

Volume Reference Baseline IsoOVEM Lee et. al. VEMDiffuse-a D2R-AENet
0" ) &” 0\ Q)
I s I

XY plane Reference  Baseline IsoOVEM Lee et. al. VEMDiffuse-a D2R-AENet

Fig. 2. Visual comparison of VSR results across XY /XZ/YZ planes of self-supervised
methods on EM (upper) and LM (lower) datasets. Red arrows indicate hallucination.

Visual Comparisons We provide visual comparisons of reconstruction results
on both EM and LM datasets. As shown in Fig. [2] the D2R-AENet effectively
restores membranes with minimal artifacts on EM subvolumes (from FIB-25),
outperforming baseline and prior VSR methods. On zebrafish retina LM data
[19], we enhance the nuclei channel by increasing lateral resolution to match the
axial resolution (10x), refining nuclear structures while suppressing noise. These
results demonstrate the robustness of our approach in different modalities.

3.3 Ablation Study on Pseudo-HR Generation Scales

Existing self-supervised VSR methods, like vEMDiffuse-a, degrade due to dis-
tribution shift between axial and lateral directions in LR training volumes. D2R
framework mitigates this by aligning lateral and axial distributions (Stage I-
IT) before training VSR networks (Stage IIT). To evaluate the impact of lateral



Axial SR for Volume Microscopy via Diffusion Guided Distillation 9

Table 3. VSR quality under different pseudo-HR volumes scales (k in Eq.)

Upsampling Scale (k) ‘PSNR-XY PSNR-XZ PSNR—YZ‘SSIM-XY SSIM-XZ SSIM-YZ
1x (No upsample) 26.12 26.60 26.60 0.6074  0.6561  0.6375

2% 26.27 26.77 26.77 0.6174  0.6650  0.6452
4x 26.47 26.98 26.98 0.6190 0.6713  0.6532
8% 26.50 27.01 27.01 0.6185  0.6742  0.6535

distribution of pseudo-HR training volumes, we train D2R-AENet with varying
upsampling scales k on downsampled EPFL data and conduct ablation experi-
ments on a smaller EPFL test set. As shown in Table|3] slice similarity improves
steadily from k = 1 to k& = 4 before plateauing at higher scales, demonstrat-
ing that effective stable structure distillation requires neither strict alignment
with isotropic resolution nor excessive upsampling; instead, capturing essential
structure translation patterns is sufficient. We set k = 8 in all D2R experiments.

4 Conclusion

In this work, we propose a VSR training framework named D2R that enables
high-quality self-supervised training through 2D diffusion priors. Our D2R frame-
work effectively trains VSR networks without HR volume supervision, achiev-
ing performance close to supervised counterparts in both resolution and mem-
brane segmentation. Additionally, we introduce AENet, which is designed for
VSR tasks. When integrated with D2R, D2R-AENet outperforms existing self-
supervised methods with reliable details. Both similarity metrics and down-
stream results validate the effectiveness of our method in real world VSR tasks.
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