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Abstract. Organelle segmentation is crucial for understanding the mor-
phology of biological structures. Existing unsupervised methods lever-
age powerful feature extractors and clustering techniques to uncover or-
ganelle structures from volumetric electron microscopy images. However,
these methods often struggle with noisy microscopy images and the com-
putational complexity of numerical clustering. In this paper, we propose
CS2C, a novel collaborative spatial and spectral deep neural clustering
framework, for multi-class organelle segmentation. The pillar of our ap-
proach is combining unsupervised deep spectral clustering and spatial
clustering, which enhances a harmony of learned cluster assignments un-
der the spatial and spectral superpixel-wise representation. Specifically,
we adopt a masked autoencoder-based feature extractor to obtain power-
ful superpixel features, where spatial clustering is performed directly on
these features. Beyond that, spectral clustering is applied in the spectral
domain, naturally alleviating high-frequency perturbations in the image
features. The entire framework is trained end-to-end using a combination
of clustering loss and consistency regularization between spatial and spec-
tral clustering. Extensive experiments demonstrate that our method out-
performs state-of-the-art unsupervised methods on known benchmarks.
Code is available at: https://github.com/JimaoJIANG/CS2C.

Keywords: Collaborative spatial and spectral clustering - Organelle
segmentation - Volumetric electron microscopy.

1 Introduction

Nanometer-level organelle segmentation plays a crucial role in understanding
the intricate morphology and organization of cellular structures [11, 16, 20, 22].
High-throughput imaging techniques, such as volumetric electron microscopy
(VEM), provide high-resolution imaging of organelle structures with great ef-
ficiency. While manual segmentation remains the gold standard for a variety
of downstream biological tasks, it is labor-intensive and relies heavily on ex-
pert knowledge. Transformer-based self-supervised learning techniques [8, 4] have
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Fig. 1. Illustration of the proposed collaborative spatial and spectral neural clustering
framework. When given a VEM slice image I, we conduct superpixel decomposition
and adopts the a masked autoencoder (MAE) to extract superpixel features F'. In the
spatial clustering branch, we compute the soft cluster assignment probability @ and
the axillary target distribution R. The cluster centroids are optimized by minimizing
KL-divergence-based clustering loss L. In the spectral clustering branch, we feed the
superpixel graph to the neural spectral embedding module for approximated spectral
bases @, which are further used to infer the spectral clustering assignment matrix P
via an MLP-based clustering module. We impose a consistency regularization Lyeq
of the spatial and spectral clustering. Our approach enables and end-to-end organelle
segmentation with consistent cluster assignment across images.

shown great potential in capturing both local and global spatial correlations,
making them well-suited for robust representations of subcellular structures.
The deep neural network-based representation learning facilitates scalable and
automated structural segmentation from microscopy images |7, 20, 10].

Clustering has long been a powerful unsupervised segmentation approach for
data grouping based on feature similarity, and can be performed in either spa-
tial or spectral domains. Spatial clustering methods typically operate directly on
extracted image features by identifying local pixel similarities. However, these
methods are sensitive to high-frequency noise in microscopy images, often lead-
ing to suboptimal segmentation results. On the other hand, spectral clustering
operates in the spectral embedding space and is more robust to high-frequency
perturbations. However, numerical spectral embedding and clustering can be
computationally expensive when dealing with large-scale graphs [6]. Further-
more, additional synchronization operations [14] are required to maintain con-
sistent cluster assignments across images.

In this paper, we exploit collaborative spatial and spectral clustering learning
and propose a novel unsupervised two-branch deep neural clustering framework,
CS2C, for organelle segmentation, as shown in Fig. 1. Drawing inspiration from
advances in self-supervised representation learning and deep embedding clus-
tering [19], our framework leverages spatial clustering on rich semantic features
extracted from the MAE model. In light of high frequency perturbations in mi-
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croscopy image features, we exploit the deep spectral embedding and conduct
clustering in the low-dimensional spectral embedding space, which is represented
by the approximated spectral basis of the graph Laplacian matrix regarding the
superpixel graph. We train the two-branch clustering model end-to-end by com-
bining the clustering loss and the consistency regularization between spatial
and spectral clustering assignments. Our approach promotes a unified solution
to organelle segmentation in both spatial and spectral domains. Extensive ex-
perimental results demonstrate that our method outperforms state-of-the-art
techniques on existing benchmarks. Our main contributions are as follows:

— We introduce an unsupervised collaborative neural spatial and spectral clus-
tering framework for efficient organelle segmentation from VEM images.

— We present a simple yet effective two-branch design for unsupervised deep
clustering, which mitigates high-frequency perturbations in microscopy im-
age features and promotes consistent clustering in both spatial and spectral
domains.

— We validate the effectiveness of our approach through comprehensive experi-
ments, demonstrating superior performance in multi-class organelle segmen-
tation compared to state-of-the-art methods.

2 Method

Given the input VEM images, the objective is to train a clustering model that
takes a VEM slice I as input and outputs clustering assignments P for various
organelle structures. As shown in Fig. 1, our framework follows the prevailing
paradigm of feature extraction and clustering inference based on feature sim-
ilarity. The core of our framework is harnessing a two-branch spatial-spectral
clustering model for organelle segmentation. The spatial clustering branch per-
forms clustering directly on the rich semantic superpixel features extracted by
the MAE model, while the spectral clustering branch conducts neural spectral
embedding and clustering in a low-dimensional space spanned by the approxi-
mated spectral basis of the graph Laplacian matrix. We introduce an end-to-end
training strategy that combines a clustering loss with a consistency regular-
ization between spatial and spectral clustering assignments. Our approach miti-
gates high-frequency perturbations in microscopy image features and encourages
spatial-spectral consistency in clustering.

Superpixel Features. Given the fine granularity of organelle structures, the
patches used in the vision transformer model must be small enough to cap-
ture detailed shapes and appearances. However, small patches increase compu-
tational complexity in feature extraction [8]. To address this, we convert the
high-resolution microscopy image into a more compact representation via super-
pixel decomposition [1] instead of using regular patches. We employ MAE-based
feature extraction [8], which has demonstrated effectiveness in handling fine-
grained, repetitive subcellular structures [10]. We up-sample the feature embed-
ding from the pre-trained MAE encoder to obtain [-channel features F' € R™*"*!
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for a VEM image with a resolution of m x n. The superpixel feature is then de-
fined as the concatenation of mean and standard deviation of the pixels within
each superpixel.

2.1 Collaborative Spatial-Spectral Neural Clustering

The core of our framework consists of two parallel clustering models: a spatial
model and a spectral model. They predict clustering assignments from super-
pixel features, leveraging the spectral clustering’s resilience to high-frequency
perturbations and the alignment with centroid-based probability distributions
in the original feature space.

Spectral Clustering. In the spectral branch, organelle segmentation is formu-
lated as a cut on the superpixel graph within the spectral embedding space. Tra-
ditional independent per-graph spectral clustering methods often overlook cross-
image relationships, leading to inconsistent cluster assignments. To address this,
we propose a deep neural spectral clustering model that leverages its generaliza-
tion capabilities to ensure consistent labeling across images. We generate a super-
pixel graph using MAE features, where the affinity matrix A € R™s*"s is defined
with the RBF kernel, and a;; = exp bl L2l 1 for 1 <1i,j < ng. k is the kernel’s
variance, and ng is the number of superpixels. We further reduce the bandwidth
and eliminate weakly correlated values as [2], and A « max (A — %"A, 0).
where a controls the strength of the repulsion forces that diminish weak connec-
tions.

We utilize a Graph Convolutional Network (GCN)-based spectral embedding
module to approximate the spectral basis @ € R™s** of the graph Laplacian
matrix L, avoiding eigenvector switching and sign flipping problems in the com-
putationally expensive numerical eigendecomposition. u denotes the number of
approximated spectral bases. The spectral embedding is optimized using two
constraints: (1) the diagonalization of the symmetric Laplacian matrix L, and
(2) the orthogonality of the approximated spectral basis @, as [18]. The spectral
embedding loss:

Lomp =D [(#] L6;)* + 0] 5] (1)
i#]
where ¢; and ¢; are the i-th and j-th column vectors of @. The eigendecompo-
sition of the symmetric Laplacian L satisfies A = T LP, where A is a diagonal
matrix containing the eigenvalues. The loss ensures that off-diagonal values of
A = &T L& approach zero and enforces the orthogonality of &.

A neural clustering module fy is introduced to assign cluster labels based
on the spectral embedding, eliminating the need for label synchronization like
Hungarian matching [14,2]. The cluster assignment probability matrix P =
softmax(fy(P)) defines a cut on the superpixel graph using the perturbation-
resistant spectral embedding.
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Spatial Clustering. In the spatial branch, clustering is directly applied to
the MAE features. Inspired by deep embedding clustering methods [19], we op-
timize learnable cluster centroids by minimizing the distance between a soft
cluster assignment and an auxiliary target distribution. The soft cluster assign-
ment matrix @ is computed using a Student’s ¢-distribution kernel [12], and
Pyl /)"
G = 55, (T Fari—py I/7) CFO72
initialized using k-means, and 7 controls the degrees of freedom. The auxiliary
target distribution R is derived by frequency-guided normalization of @, and

@ Xk 5
Tij = ) : (2)
Sy (a2, / Srawa)

i € R¥*2 represents the learnable centroids,

We optimize the cluster centroids by minimizing the Kullback-Leibler (KL) di-
vergence between the soft assignment ) and the target distribution R. The
clustering loss is defined as:

[/clu - KL RHQ Z er

Minimizing the loss L., refines the centroids u, improving cluster purity and
focusing on high-confidence assignments.

(3)

Spatial-Spectral Consistency Regularization. Spectral clustering is known
to be robust against high-frequency perturbations in image features, owing to the
low-pass nature of the graph Laplacian’s eigenbasis approximation. Spatial clus-
tering, when applied to MAE features, is effective for iterative refinement of soft
cluster assignments. To exploit the strengths of both clustering methods, we pro-
pose minimizing the distance between their respective probabilistic assignment
matrices. Specifically, we use the KL divergence to measure the dissimilarity be-
tween the spectral clustering matrix P and the spatial clustering matrix R. The
spatial and spectral consistency regularization loss L4 is defined as:

Lreg = KL(P|[R) = Zzpm P (4)

0,J

Unlike cross-entropy loss, KL divergence updates the model more gently [3],
helping to prevent abrupt shifts in data representations.

2.2 Training Loss

The overall training loss is a weighted combination of the neural spectral em-
bedding loss Lemp, the clustering loss L., and the spatial-spectral consistency
regularization loss L;.g.

L= £emb + ’Yl‘cclu + 72£7'eg7 (5)
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Fig. 2. Qualitative comparison of organelle segmentation by compared methods.

where v and 7, are hyperparameters that balance the regularized spatial and
spectral clustering. Minimizing the combined loss function £ optimizes both the
neural spectral and spatial clustering modules simultaneously.

In the online inference process, given a VEM image I, first, the MAE-based
feature extractor generates superpixel features, which are then used to construct
the superpixel graph. Second, the spectral clustering module takes the weighted
superpixel graph as an input and assigns each superpixel to a cluster, producing
the clustering assignment matrix P and achieving the organelle segmentation.

3 Experiments

Datasets and Metrics. We evaluate the proposed CS?C on the BetaSeg |9,
15], which consists of four preprocessed primary mouse pancreatic islet 5 cell
volumes. The first three volumes are used for training, and the last one for test-
ing as [20]. We divide the VEM slices into superpixels with a physical size of
around 5 micrometers squared area using the SLIC [1] algorithm, with the com-
pactness set to 0.2. During training, we use slices with a resolution of 560 x 560,
containing approx. 3000 superpixels. We evaluate the performance using Dice
Similarity Coefficient (DSC) and Intersection over Union (IoU), which measure
the consistency of the predicted segmentation with the ground truth.

Implementation Details. We use the MAE based feature extractor [20], with
the feature channel number [ of 192. x in RBF kernel, « in affinity matrix,
and 7 in Student’s t-distribution kernel are set to 2, 4 and 1, respectively. We
retain u = 12 spectral bases and set the cluster number k£ to 14 according to
the number of organelle types empirically. The hyperparameters v, and 7, are
set to 1 in the loss function £. The spectral embedding module includes three
linear GCN layers with 384 x 96, 96 x 48, and 48 x 12 weight matrices. The
MLP-based clustering module has two fully connected layers with dimensions of
14 x 14 and 14 x 8. We implement the proposed CS?C using the PyTorch toolkit
on a PC with an NVIDIA RTX 2080Ti GPU. We use the Adam optimizer with
a momentum of 0.9 and 0.999. The learning rate is set to 0.01 for the first 3,000
iterations and then reduced to 0.0001 for 2,000 iterations. The mini-batch size
is set to 1. The training takes approx. 6 hours. In the online testing process,
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Table 1. Segmentation results regarding the DSC and IoU by compared methods and
variants without spatial (spa) or spectral (spe) branches. We report the output clus-
tering, CS?Cgpe and CS?Capa, from the spectral and spatial branches. (sp: superpixel)

Feature Use Nucleus Granules Mitochondria  Average

Genre Graph poco 1004 DSCT ToUt DSCH ToUt DSCt ToUt
k-means [13] Sp No 0.927 0.864 0.442 0.284 0.754 0.605 0.708 0.584
Classical SC [17]  sp Yes 0.903 0.823 0.365 0.224 0.769 0.625 0.679 0.557
DSM [14] patch  Yes 0.848 0.735 0.347 0.210 0.743 0.591 0.646 0.512
DeepCUT [2] patch  Yes 0.861 0.756 0.333 0.200 0.694 0.531 0.629 0.495
FastDGC [5] Sp Yes 0.651 0.482 0.484 0.319 0.658 0.490 0.597 0.431
SDCN (3] Sp Yes 0.902 0.821 0.442 0.284 0.665 0.498 0.669 0.534
CCGC [21] Sp Yes 0.957 0.917 0.452 0.292 0.835 0.717 0.748 0.642
MAESTER [20] pixel No 0.943 0.892 0.556 0.385 0.778 0.636 0.759 0.638
w/o spe Sp No 0.952 0.909 0.575 0.404 0.824 0.701 0.784 0.671
w/0 spa Sp Yes 0.954 0.913 0.573 0.401 0.861 0.756 0.796 0.690
CS?Copa Sp No 0.958 0.919 0.601 0.430 0.838 0.722 0.799 0.690

CS?Cepe (Ours) sp Yes 0.966 0.935 0.603 0.431 0.872 0.772 0.814 0.713

the feature extraction, spatial clustering, and spectral clustering of a 1082 x 545
image take 2.714 seconds, 0.005 seconds, and 0.002 seconds.

Experimental Results. We compare our approach to state-of-the-art deep
clustering methods, including DSM [14], DeepCUT |[2], FastDGC [5], SDCN |3],
CCGC [21], and MAESTER [20], as well as methods that apply classical k-
means [13] and spectral clustering [17] on MAE-based superpixel features. To
ensure a fair comparison, we use the same superpixel features and graphs for
compared deep clustering methods [5,3,21] as ours. Table 1 and Fig.2 present
quantitative and qualitative results for organelle segmentation. Our method con-
sistently outperforms all baselines. The compared methods rely on deep neu-
ral network-based feature extraction, such as DINOViT[14,2] and MAE [20].
Clustering is performed either on individual pixels [20], patch graphs [14, 2], or
superpixel graphs as in our approach. Pixel-level clustering [20] generally out-
performs patch-based clustering [14, 2], though it incurs a higher computational
cost during both training and testing. Notably, compared to MAESTER [20],
which uses k-means on pixel-level MAE features, our method uses a compact
superpixel graph that reduces computational time by more than a factor of 137,
while achieving a DSC boost of 0.023 (nucleus), 0.047 (granules), and 0.094
(mitochondria). Fig.3(b) shows the effect of Gaussian noise levels from 1% to
8% on organelle segmentation. Across all noise levels, the performance drop of
MAESTER|20] is approximately twice as large as that of our method. Superior
performances of our approach can be attributed to spectral embedding and the
collaborative learning strategy, mitigating negative impacts of noisy features.

Our method excels by harmonizing spatial and spectral clustering, offering
performance gains over approaches using k-means or neural clustering networks
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Table 2. Organelle segmentation accuracy when using different cluster number k.

k Nucleus Granules Mitochondria Average

DSCt IoU?t DSCt IoU?t DSCt IoUt DSCt TIoU?t
8 0.940 0.887 0.243 0.139 0.645 0.476 0.609 0.500
10 0.948 0.900 0.181 0.099 0.666 0.495 0.597 0.498
12 0.968 0.938 0.568 0.397 0.869 0.768 0.802 0.701
14 0.966 0.935 0.603 0.431 0.872 0.772 0.814 0.713
16 0.964 0.931 0.584 0.412 0.870 0.770 0.806 0.704
18 0.965 0.933 0.513 0.345 0.871 0.771 0.783 0.683

directly on superpixel features [5, 3, 21], as well as deep spectral clustering meth-
ods [14,17]. This makes our CS?C SOTA among unsupervised baselines, and
demonstrates the power by collaborative neural spatial and spectral clustering
with generalization capacity and consistent clustering across images.

w/o spe CS*Copa
_ s

0.600 + + + + t t |
Noise 1% 2% 3% 4% 5% 6% 7% 8%
Free

(b)

Fig. 3. (a) Organelle segmentation by variants of the proposed method without the
spectral branch (spe) or the spatial branch (spa). We illustrate the output clustering,
CS?Cspe and CS%Cepa, from the spatial and spectral branches. Errors are white blocked.
(b) Organelle segmentation accuracy when confronted with noisy VEM images.

Ablation Study. We conduct an ablation study to assess the contributions of
the spatial and spectral clustering branches as shown in Table 1 and Fig.3(a). We
compare our full framework with two variant models: (1) w/o spe, which removes
the spectral branch and uses only L., for training. This setup combines DEC[19]
with frozen MAE features. (2) w/o spa, which removes the spatial branch and re-
lies on L¢mp and k-means supervision for training. The results demonstrate that
both the spatial and spectral branches contribute to final clustering. Specifically,
the spatial and spectral branches yield IoU gains of 0.016 and 0.012, respectively.
The spatial branch also improves structural segmentation along nucleus bound-
aries, helping to prevent label omissions (Fig. 3(a)). Overall, the proposed CS%C,
which uses both spatial and spectral branches in parallel, achieves consistent or-
ganelle segmentation aligned with the ground truth.

Parameter Analysis. Table 2 demonstrates the impact of cluster number &
on subcellular segmentation performance. The results show that performance
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is insensitive with moderate cluster numbers. However, both excessively small
and large cluster numbers have limitations. With too few clusters, granules and
mitochondria become difficult to distinguish, while too many clusters hinder the
capture of fine-grained granules, resulting in reduced performance.

4 Conclusion

We presented a collaborative spatial-spectral neural clustering approach for or-
ganelle segmentation, which integrates neural clustering in both the spatial and
spectral domains. Our method introduces a novel two-branch clustering frame-
work that leverages the robustness of spectral clustering to high-frequency per-
turbations in image features, while also utilizing spatial clustering for iterative
refinement of cluster assignments. We demonstrate the effectiveness of our ap-
proach with state-of-the-art accuracy in organelle segmentation.
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