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Abstract. The diffusion MRI signals in the human cerebral cortex are
strongly associated with neurodegenerative diseases. Although models
like NODDI have been extensively used to characterize cortical microstruc-
ture degeneration, they fall short in capturing detailed, orientation-specific
connectivity changes within the cortex. In this study, we introduce a
method to decompose cortical tissue diffusion signal to radial and tangen-
tial components. Our approach uses data from multi-shell diffusion imag-
ing and combines it with anatomical information from brain surfaces. By
applying a GPU accelerated probabilistic optimization framework, we
can accurately and efficiently estimate these diffusion components while
keeping the results smooth and consistent with the cortical anatomy. We
test our method on data from HCP subjects and a clinical dataset of pa-
tients with autosomal dominant Alzheimer’s Disease (ADAD) subjects.
Our results demonstrate that the proposed method can more effectively
reveal cortical gray matter connectivity changes related to tau pathology
than metrics from the NODDI model. Our codebase is publicly available
at https://github.com/Haibaobob/FOD-ctx-decomp.
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1 Introduction

Traditional diffusion MRI (dMRI) research has primarily concentrated on deep
white matter (DWM), where strong anisotropic signals facilitate fiber tracking,
but the study of cortical gray matter (GM) remains challenging due to its in-
herently isotropic diffusion characteristics [1]. In recent years, several innovative
techniques [2–6] have been developed to tackle the challenges posed by GM,
where fiber orientations are predominantly radial or tangential relative to the
cortical surface. Typically, radial fibers are considered extensions of myelinated
axons from the DWM, whereas tangential fibers, which run within the corti-
cal laminae, are thought to represent intracortical pathways [3, 4]. However, a
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comprehensive method for accurately decomposing diffusion signals into these
distinct radial and tangential components is still lacking.

Although Neurite Orientation Dispersion and Density Imaging (NODDI) [7]
offers detailed insights into brain microstructure, particularly in gray matter
[5], it only studies the general density and orientation information, ignoring the
radial and tangential differences. Earliest study on such differences employed
the diffusion tensor model to analyze intra-cortical signals, effectively charac-
terizing regional differences in radial and tangential diffusion components [3].
However, because the tensor model cannot resolve fiber crossings—a ubiquitous
phenomenon in cortical gray matter [4]—its applicability is limited. To over-
come this, [4] utilized the fiber orientation distribution (FOD) function, which
can handle crossing fibers, and demonstrated distinct FOD structures across dif-
ferent cortical laminae via lamina-wise analysis. However, their radial component
only relies on the voxel-wise normal direction and ignores the topographic reg-
ularity. Given that radial and tangential signals arise from different tissue types
and have unique roles in neurodegeneration and neural development, accurately
decomposing these components is essential for a comprehensive understanding
of brain microstructure.

In this paper, we model the decomposition of radial and tangential connectiv-
ity as a discrete optimization problem. To address its computational complexity,
we employ a probabilistic relaxation and develop a GPU-accelerated framework.
Experiments on the HCP dataset show that our method efficiently and accu-
rately decomposes the radial and tangential peak fields. Moreover, our results
on an Alzheimer’s Disease dataset demonstrate that these indicators offer dis-
tinct advantages for neurodegeneration detection compared to NODDI metrics.

2 Method

2.1 Free-water-aware FOD Reconstruction and Peak Extraction

Diffusion MRI aggregates various diffusion signals within each voxel, complicat-
ing the accurate characterization of distinct diffusion phenomena such as intra-
axon water, free water, and other interference sources. Thus, we employ a fiber
orientation distribution (FOD) model that incorporates compartment-specific
information and leverages multi-shell dMRI data [8].

Since the model in [8] was originally developed for white matter, we have
modified it to include a free-water compartment to account for the influence of
cerebrospinal fluid (CSF) surrounding gray matter. With this modification, the
diffusion signal s(b,u) of a given b-value b and a gradient direction is modeled
using spherical convolution:

s(b,u) = (f ∗s k)(u) + αe−bλiso + βe−bλFW + η, (1)

where f represents the FOD to be deconvoluted, and k is a stick kernel func-
tion representing the intra-axonal diffusion. The parameters α and β represent
the volume fractions of isotropic extra-axonal diffusion and free-water diffusion,
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respectively. The diffusivity of the isotropic extra-axonal component is denoted
by an unknown parameter λiso, while λFW is fixed to 0.003 µm2/s to represent
the free-water diffusivity. The final term η accounts for measurement noise. The
sum of all compartment fractions satisfies the normalization condition [8].

We reconstruct the free-water-aware FODs using the same constrained energy
minimization algorithm in [8]. The resulting FODs are represented as functions
fFOD : S2 → R+, where S2 represents the unit sphere. To facilitate further anal-
ysis, we extract the local maxima of these FODs, which indicate the dominant
fiber orientations within each voxel. Since the number of FOD peaks can vary
across voxels, we standardize the representation by fitting all peaks into a 5D
tensor S with a maximum of m peaks. The FOD peaks are sorted by magnitude,
and if a voxel contains fewer than m peaks, the remaining positions are padded
with zeros. In all our experiments, we set m=5.

2.2 Estimate Radial and Tangential Directions in Cortical Voxels

We aim to decompose the FOD function into tangential and radial components
relative to the white matter (WM) and pial surfaces. In [9], the FOD function
was projected onto the deformed WM surface to track U-fibers, but this approach
did not yield the radial component. In [10], a principle FOD peak direction was
selected in each voxel—by solving a Markov Random Fields (MRF) problem—to
follow the fiber bundle’s trajectory.

Problem Formulation Inspired by [10], we posit that the radial and tangential
FOD peak directions vary smoothly across the cortex and can be effectively
modeled using an MRF framework. Given voxel-wise radial peak directions Ri

and principle peak tangential directions T i, and acknowledging that either Ri

or T i may be absent in some voxels, the optimal peak vectors are obtained by
minimizing the following loss function:

L =
∑
i∈Ω

(Lu(i) + λp

∑
j∈N (i)

Lp(i, j)), (2)

where Ω is the set of cortical voxels, and N (i) denotes the set of voxels spatially
adjacent to voxel i. The strength of the pairwise smoothness regularization is
controlled by the positive weighting factor λp, which can be adjusted based on
the specific dataset and the desired level of smoothness.

Let ⟨ , ⟩ denote the cosine similarity between vectors and δ(·) denote the
indicator function. We further define the unary loss function Lu and the pairwise
loss Lp:

Lu(i) = −δ(Ri ̸= 0)

|ΩR|
|⟨Ri,N i⟩|+

δ(T i ̸= 0)

|ΩT |
|⟨T i,N i⟩|− (

∥Ri∥2
|ΩR|

+
∥T i∥2
|ΩT |

), (3)
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Fig. 1. GPU accelerated optimization framework. Each rectangle in the diagram repre-
sents a 3D tensor. The optimization pipeline operates as follows: During each forward
pass, the Soft Peak Generator (orange trapezoid) generates soft peak tensors R
(radial) and T (tangential) by applying a masked softmax to the logit tensors LR,
LT , followed by a probability-weighted sum with the peak tensor S. These soft peaks,
along with the interpolated normal direction N , are used to compute the loss. The
computed loss then backpropagates gradients to update the logit tensors LR and LT

through gradient descent.

Lp(i, j) =− δ(Ri,Rj ̸= 0)

|ER|
|⟨Ri,Rj⟩|

− δ(Ri,Rj ̸= 0)

|ER|

∣∣∣⟨Ri − projT i
Ri,Rj − projT j

Rj⟩
∣∣∣ , (4)

where N i denotes the normal at the center of voxel i, obtained by interpolating
the normals from the pial and WM surfaces. |ΩR| =

∑
i∈Ω δ(Ri ̸= 0) and |ΩT | =∑

i∈Ω δ(T i ̸= 0) counts non-zero vectors. |ER| =
∑

(i,j)∈E δ(Ri,Rj ̸= 0) counts
adjacent pairs with non-zero radial vectors. projT i

Ri denotes the projection of
Ri onto T i.

The unary loss function Lu is designed to minimize the average cosine simi-
larity between non-zero Ri and the corresponding normals N i, while maximize
the average similarity between non-zero T i and N i. The last term in Lu penal-
izes small magnitudes of Ri and T i to suppress noise contributions. In contrast,
the pairwise loss Lp regularizes the spatial smoothness by averaging the cosine
similarity over adjacent voxel pairs, of which both vectors are non-zero.

However, this discrete modeling makes it computationally hard to iterate
all possible combinations and find the global optimum. Although advanced al-
gorithms such as belief propagation (BP) [11], as utilized in [10], can provide
approximate solutions, both the memory and time requirements escalate rapidly
as the graph scales to encompass the whole brain.
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GPU Accelerated Optimization To address the computational inefficiencies
inherent in discrete optimization, we reformulate the problem as a continuous
probabilistic relaxation. More specifically, for each voxel i, we estimate the proba-
bility mass functions P i

R and P i
T over the candidate peaks C = {Sk

i |k ≤ m}∪{0},
ensuring that the selected peak minimizes the loss L in (2).

As of common practice in probability regression, instead of explicitly defining
probability distributions, we introduce logits LR and LT , where the last logit
determines the probability of selecting zero peaks. We apply masked softmax
operations with a mask tensor M to transform the logits to probability, where
M mask out the padded zero peaks in S. The softmax ensures that probabilities
sum up to 1 while the probability of padded zeros to be 0.

The logits are first initialized based on the cosine similarity between peaks
in C and N i. During each forward step, soft peaks Ri =

∑
k≤m P i,k

R Sk
i and

Ti =
∑

k≤m P i,k
T Sk

i are generated by the probability-weighted sum of peaks.
The soft peaks are not necessarily from C, which may generate spurious peaks
that well minimize the loss L. Therefore, we regularize the entropy HR and HT ,
which condense the probability distribution to a single candidate as optimization
iterates. Moreover, the Jensen-Shannon divergence between PR and PT is max-
imized to avoid selecting the same peak as both radial and tangential direction.
The overall optimization problem is reformulated as:

min
LR,LT

L+ λreg
∑
i∈Ω

(Hi
R +Hi

T − JS-Div(P i
R, P i

T )), (5)

where λreg is a regularization parameter, and P i
R and P i

T are the masked softmax
of Li

R and Li
T respectively.

The entire optimization process—illustrated in Fig. 1—is implemented using
differentiable tensor operations. This design enables us to leverage the PyTorch
library for GPU acceleration. Once convergence is achieved, the candidate peaks
with the highest probabilities are selected as the radial and tangential directions.

Given the estimated directions Ri and T i, we quantify the radial and tan-
gential components Ri and Ti from the FOD functions through spherical inte-
grations over a given threshold θ. For example, Ri can be computed as follows:

Ri =


∫
{⟨A,Ri⟩>cos(θ)}

f i
FOD dA, if Ri ̸= 0

0, otherwise
(6)

The tangential component Ti can be computed similarly.

2.3 Implementation Details

The optimization was implemented in PyTorch using the Adam optimizer with
a learning rate of 0.1, β1 = 0.9, and β2 = 0.999. The smoothness regularization
weight λp was set to 0.5 for the HCP dataset and 0.1 for the ADAD dataset.
The entropy regularization weight λreg was fixed at 1×10−6 for all experiments.
The number of optimization steps was set to 500 for HCP and 300 for ADAD.
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Fig. 2. Qualitative comparison of radial peaks of HCP subject 100408. (A) All ex-
tracted FOD peaks. (B) Radial directions from NN. (C) Radial directions from BP.
(D) Radial directions by the proposed method. Red and white curves represent the pial
and white matter surfaces, respectively. Voxels in blue boxes indicate that the proposed
method identifies tangential peak field and excludes those peaks from the radial peaks.

3 Experiments and Analysis

3.1 Data Preprocessing

Data preprocessing begins with structural processing using Freesurfer’s T1 recon-
all pipeline [12]. Multi-shell diffusion data is then employed to reconstruct free-
water-aware FODs. To mitigate distortions in cortical regions, the T1 image
is nonlinearly registered to the dMRI space using ANTs software [13]. Finally,
the cortical surfaces extracted from the T1 image are warped into the dMRI
space using the computed deformation field and affine transformation, yielding
accurate representations of the pial and white matter boundaries in dMRI space.

3.2 Method Validation

To evaluate our proposed method, we compare with two baseline approaches: the
nearest neighbor (NN) method and the belief propagation (BP) based algorithm
[10]. The experiments were conducted on a server equipped with an NVIDIA(R)
A6000 GPU and an Intel(R) Xeon(R) Gold 5317 CPU.

In this experiment, we use the Human Connectome Project (HCP) dataset
[14]. The HCP dMRI data was acquired from 270 gradient directions distributed
over three different b values: 1000, 2000, and 3000 s/mm2. The resolution of
dMRI is 1.25mm isotropic.

The NN method selects the peak that is closest to the interpolated normal di-
rection in each voxel; however, it often produces noisy and inconsistent estimates.
Meanwhile, the BP algorithm yields smoother estimates, but it is hampered by
high computational costs and memory demands. Moreover, both baseline meth-
ods struggle to distinguish tangential peaks from radial peaks in voxels where the
radial peak is absent. In contrast, our proposed approach reduces false positives
and delivers smoother, more consistent results, as demonstrated in Fig. 2.

We evaluate performance by quantifying the smoothness of the radial peak
field and its radial component. Specifically, we compute the mean Cosine Sim-
ilarity (mCS) between neighboring radial peaks and the mean Scale-Invariant
Gradient (mSIG) of the radial component, given by ∥∇R∥2

|R| . The results on 72
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Table 1. Quantitative Smoothness Evaluation

Method mCS mSIG Average Time (sec)

NN 0.886 (0.005) 0.950 (0.083) 0.958 (0.090)
BP 0.898 (0.004) 0.770 (0.042) 3693.463 (868.632)
Ours 0.916 (0.005) 0.692 (0.047) 89.462 (1.040)

Fig. 3. The radial component profile on surfaces in dMRI space. The AD subject
(B) shows widespread intensity reduction especially in temporal and parietal lobes
compared to the CN subject (A).

HCP subjects, presented in Table 1, demonstrate that our method outperforms
the baselines in terms of smoothness while maintaining acceptable computational
efficiency.

3.3 Application to Neurodegeneration Analysis

We applied our method to a cohort of 30 autosomal dominant Alzheimer’s disease
(ADAD) subjects carrying the A431E mutation [15], including 19 cognitively
normal (CN) individuals and 11 patients with Alzheimer’s disease (AD). Follow-
ing the HCP protocol, T1-weighted MRI and multi-shell dMRI were acquired on
a 3T Siemens Prisma scanner.

For comparison, we computed the Neurite Density Index (NDI) and Orien-
tation Dispersion Index (ODI) from the NODDI model for cortical gray matter
following the method in [16]. To mitigate potential partial volume effects, both
the proposed and NODDI volume features were interpolated onto surface profiles
by averaging the interpolated volume intensities at three equally spaced surfaces
(25%, 50%, and 75%) between white matter and pial surfaces. Fig. 3 presents
the radial component projected onto the cortical surface, highlighting regional
differences in radial tissue diffusivity between AD and CN subjects.

The analysis was conducted at both the ROI and vertex levels. In the ROI-
wise analysis, surface image profiles were averaged within each cortical ROI as
defined by Freesurfer, providing a region-level summary of diffusion character-
istics and facilitating comparisons across anatomically meaningful regions. In
contrast, the vertex-wise analysis involved interpolating the surface profiles onto
a common template surface, which enabled a finer-grained assessment of local-
ized diffusion abnormalities associated with neurodegeneration.
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Fig. 4. Cohen’s d across 36 ROIs of left hemisphere (A) and right hemisphere (B).
The radial component (Rad) yields higher effect sizes, especially in left hemishpere.
Paired one-tailed t-tests show Rad significantly outperforms NDI and ODI on the left
(p∗ < 0.001), and NDI on the right (p∗ = 0.034); other differences were not significant.
p∗ denote Bonferroni correction.

Fig. 5. Correlation coefficients (CC) between tau PET SUVR and cortical connectivity
metrics. (A,B) CC of tau PET SUVR with the radial (Rad) and tangential (Tan)
component of our method. (C, D) CC of tau PET SUVR with the NDI and ODI metrics
of NODDI. (E,F): Boxplots of vertex-wise CCs on the left and right hemisphere.

Cohen’s d between AD and CN In this experiment, we compared the Co-
hen’s d effect size between AD and CN groups across 36 ROIs (Fig. 4). The radial
component identified by our method exhibited a higher effect size than NODDI.
Notably, the results revealed the hemispheric asymmetries in ADAD pathology:
the left hemisphere showed more pronounced radial degeneration, while the right
hemisphere exhibited more uniform degeneration. These nuanced observations
were not attainable with the NODDI model alone.

Correlation with Tau-PET Imaging For 30 subjects, Tau PET scans were
acquired using the 18F-AV-1451 tracer. We followed the PET-Surfer process-
ing pipeline [17] to compute the standard uptake value ratios (SUVRs) of tau
PET signals in cortical areas. Fig. 5 shows our radial component demonstrated
a higher negative correlation with Tau-PET SUVR compared to NODDI( p∗ <
0.001, Bonferroni-corrected, paired t-tests), especially in the parietal, tempo-
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ral and frontal lobes. This suggests that tau deposition may be more strongly
associated with radial-wise degeneration in these regions, providing potential
biomarkers for neurodegeneration detection.

4 Conclusions

In this work, we developed a GPU accelerated algorithm for decomposing the
radial and tangential connectivity in cortical gray matter. Validated using data
from HCP subjects and an ADAD cohort, we demonstrate that our method can
more effectively detect cortical connectivity changes than the NODDI approach.
We also showed that the radial components have much stronger association with
tau pathology than the tangential and NODDI metrics, which suggests the po-
tential of the radial connectivity in cortical gray matter as a novel biomarker for
neurodegeneration.
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