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Abstract. Pelvic Lipomatosis (PL) is a rare disorder characterized by
abnormal fat proliferation in the pelvic region, where subtle imaging
differences between pathological and normal fat pose significant diag-
nostic challenges. Existing deep-learning-based computer-aided diagnosis
methods struggle to integrate high-level clinical semantics, which limits
the diagnosis accuracy. This paper proposes a novel Evidential Deep
Learning (EDL) method that synergistically fuses multi-type semantic
radiomics priors derived from clinical expertise to enhance PL diagnosis.
First, referring to clinical experiences, the critical PL semantic radiomics
including bladder-rectal fat distance, rectal circularity, bladder-seminal
vesicle angle, and relative pelvic fat volume are extracted from 3D ab-
dominal CT images. Second, these semantic radiomics are probabilisti-
cally formulated as prior evidences to quantify their diagnostic relevance.
Finally, the prior evidences are fused into the EDL backbone to imple-
ment PL diagnosis. Comparing with the pure deep learning methods, the
EDL method with prior evidences not only reduces overconfident predic-
tions but also enables interpretable decision-making by involving clinical
knowledge. Experiments demonstrate the state-of-the-art performance of
the proposed method, which achieves great improvements over conven-
tional deep learning baselines. Ablation studies also validate the necessity
of integrating the semantic features. Theoretical proofs further confirm
that clinically consistent priors minimize prediction loss and enhance
model stability. This work advances the diagnosis by bridging clinical
radiomics with data-driven deep learning and provides a paradigm for
interpretable PL medical image analysis.

Keywords: Pelvic Lipomatosis Diagnosis · Semantic Radiomics · Evi-
dential Deep Learning.
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Fig. 1: Framework of the proposed method that integrates multiple clinical se-
mantic radiomics to optimize PL diagnosis.

1 Introduction

Pelvic lipomatosis (PL) is a rare benign proliferative condition characterized by
the overgrowth of non-encapsulated fatty tissue in the perirectal and perivesical
spaces of the pelvis [1], causes organ compression and deformation [2]. Its low
incidence (0.6-1.7/100,000) [3] and rarity complicate data acquisition while sim-
ilarity with fat-related conditions (e.g., obesity) leads to frequent misdiagnosis.

While traditional Deep Neural Networks (DNNs) show potential in computer-
aided diagnosis for common diseases [4–10], their direct application to PL is
challenged by data scarcity. Consequently, there is a recent inclination to incor-
porate additional information to address data limitations [11, 12]. However, cur-
rent knowledge-integrated methods often rely on shallow fusion strategies (e.g.,
transfer learning [13–15] or simplistic clinical feature concatenation [16–19]),
which are insufficient for the complexity of PL, requiring integrating multiple,
high-level clinical semantics to distinguish it from common fat diseases.

To tackle the problems, we construct clinically semantic radiomics based on
clinical domain knowledge and integrate them as prior evidences into Evidential
Deep Learning (EDL) [20] backbone for PL diagnosis. This integration reduces
dependence on labeled data, while maintaining diagnostic accuracy with limited
dataset. By guiding the diagnosis process with semantic radiomics, the decision
of model is more consistent with clinical diagnostic expertise, distinguishing PL
from other fat diseases. The contributions of this paper are summarized below.

– Construct semantic radiomics based on clinical domain knowledge of PL.
These radiomics include bladder-rectal fat distance, rectal circularity, bladder-
seminal vesicle angle, and relative pelvic fat volume, which cover fat-induced
compression and displacement of pelvic organs.

– Propose strategy to integrate clinical semantic radiomics into DNN model.
The extracted radiomics are transformed into probabilistic distributions,
which are then fused as prior evidences into EDL backbone model to en-
hance PL diagnosis.

The illustration of our proposed framework can be seen in Fig. 1. First, based
on the multi-organ segmentation results of abdominal CT images, morphological
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Fig. 2: Four semantic radiomics of PL. The red line in (a) is the absolute distance
from bladder to rectum, the green line in (b)(c) represents the fat-based distance.

changes of pelvic organs are quantified. Then, these radiomics are converted
into class probability distributions and integrated as weighted prior evidences.
Finally, the prior evidences are fused into EDL backbone to enhance diagnostic
accuracy under data scarcity.

2 Methodology

2.1 Semantic Radiomics of PL

PL is characterized by overgrowth of abnormally proliferated fat tissue in the
pelvis causing organ compression and deformation. Guided by clinical expertise
and prior studies [21] [22], we focus on the imaging parameters with minimal
sensitivity to bladder filling and high reproducibility, including:

1.Distance from Bladder to Rectum (DBR)
2.Circularity of Rectum (CR)
3.Angle between Bladder Wall and Seminal Vesicle (ABS)
4.Relative Pelvic Fat Volume (RPFV)

These semantic radiomics are extracted from 3D abdominal CT images.
Distance from Bladder to Rectum. To accurately measure true organ dis-
placement caused by pathological fat proliferation (Fig. 2(b)(c)), excluding in-
terference from intervening organs (Fig. 2(a)), we define the fat-based distance:
D = n × d, where d is the pixel spacing, and n =

∑
t∈l(x) I(t) counts fat

pixels along the line l(x) between bladder base â and rectum apex b̂: â, b̂ =
argmina∈A

(
argminb∈B ∥a− b∥

)
, where a is bladder pixel points, b is rectum

pixel points, A denotes bladder pixel sets, B denotes rectum pixel sets, and ∥·∥
denotes the Euclidean distance. I(t) takes the value of 1 if pixel point t is fat
pixel point, and 0 otherwise.
Circularity of Rectum. As shown in Fig. 2(d)(e), we quantify fat-induced rec-
tal deformation: R = 4π ·S/C2, where S represents the area enclosed by rectum
contour and C denotes the circumference of contour.
Angle between Bladder Wall and Seminal Vesicle. Pathological fat prolif-
eration alters the relative position of bladder and seminal vesicle (Fig. 2(g)(h)),
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quantified through bilateral angular measurements. The right (θ1) and left (θ2)
angles are computed via vector dot products between anatomical landmarks:
θ1 = arccos

−−−→
B2B1·

−−−→
P2P1

|
−−−→
B2B1|·|

−−−→
P2P1|

, θ2 = arccos
−−−→
B4B3·

−−−→
P4P3

|
−−−→
B4B3|·|

−−−→
P4P3|

, where B1, B2, B3, B4 and P1,

P2, P3, P4 denote bladder and seminal vesicle boundary points (see in Fig. 2(f)).
The average angle θ is then calculated as: θ = (θ1 + θ2)/2.
Relative Pelvic Fat Volume. As illustrated in Fig. 2(i)(j), the relative fat vol-
ume V is the ratio of fat volume Vfat to pelvic volume Vpelvic: V = Vfat/Vpelvic.

2.2 Fusion of Semantic Radiomics as Prior Evidence into EDL

Semantic radiomics are translated into prior evidences through class condi-
tional modeling. Specifically, for each feature k ∈ {D,R, θ, V } (as mentioned
in Section 2.1), we compute Gaussian parameters for the PL class (µ+

k , σ+
k )

and the control class (µ−
k , σ−

k ). We calculate the probability and confidence
for each sample xi: the likelihood is given by the probability density func-
tion a+i,k = 1

σ+
k

√
2π

exp
(
−(k − µ+

k )
2/2(σ+

k )
2
)
, which quantify the relative likeli-

hood, and the confidence is determined by the cumulative distribution function
c+i,k = 1

σ+
k

√
2π

∫ k

−∞ exp
(
−(k − µ+

k )
2/2(σ+

k )
2
)
dxi, amplifying features where sam-

ples occupy statistically significant positions. Based on this, the prior evidences
that xi belongs to positive and negative classes are determined by

a+i =
〈
c+i,k, a

+
i,k

〉
=

∑
k c

+
i,k · a+i,k∑
k c

+
i,k

, a−i =
〈
c−i,k, a

−
i,k

〉
=

∑
k c

−
i,k · a−i,k∑
k c

−
i,k

, (1)

where a+i +a−i =2 is achieved through normalization.
Traditional DNNs suffer from overconfidence due to softmax’s exponential

amplification of logit differences. In contrast, EDL [20] treats class probabilities
as multivariate random variables following a distribution. The mathematic ex-
pectation of this distribution reduces model dependence on labeled data while
improving classification accuracy. Based on Bayesian theorem, the posterior dis-
tribution of a multivariate random variable can be expressed as

fpost(p | x) = f like(x | p)fprior(p)∫
p
f like(x | p)fprior(p)dp

, (2)

where p denotes the class probabilities output from the neural network, f like(x |
p) denotes the likelihood function and fprior(p) denotes the prior distribution.
Based on the conjugate relationship between binomial likelihood (f like(e+, e−; p1,
p0) = Binomial(e+, e−; p1, p0) = Ce+

e++e−p
e+

1 pe
−

0 ) and Beta prior (fprior(p1, p0;

a+, a−) = Beta(p1, p0; a
+, a−) =

pa
+−1

1 pa
−−1

0

B
(
a+, a−

) ) [23], the posterior can be com-
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puted as

fpost(p1, p0; e
+, e−, a+, a−) =

f like(e+, e−; p1, p0)f
prior(p1, p0; a

+, a−)∫ 1

0

f like(e+, e−; p1, p0)f
prior(p1, p0; a

+, a−)dp

=

Ce+

e++e−p
e+

1 pe
−

0 · 1

B (a+, a−)
pa

+−1
1 pa

−−1
0∫ 1

0

Ce+

e++e−p
e+

1 pe
−

0 · 1

B (a+, a−)
pa

+−1
1 pa

−−1
0 dp

=
pe

++a+−1
1 pe

−+a−−1
0

B
(
e+ + a+, e− + a−

) , (3)

where the probabilities for the PL and control classes are denoted by p1 and p0,
respectively, e+ and e− represent the observational evidences gathered by DNN,
a+ and a− are the prior evidences based on semantic radiomics (Eqs. (1)), and
B(·) is beta function.

2.3 PL Learning with Semantic Radiomics Prior Evidence

Given a dataset D = {xi,yi}
N
i=1 which comprisesN labelled 3D CT images. Each

image is encoded with a one-hot label vector yi = (y+i , y
−
i ). The loss function

for PL diagnosis is defined as the combination of the cross-entropy term LCE
i

and the regularizing term LKL
i , which can be expressed as

L =
1

N

N∑
i=1

(LCE
i + λ · LKL

i ), (4)

where λ = min(1.0, τ
1000 ) ∈ [0, 1] is the annealing coefficient and τ is the index

of the current training epoch. The cross-entropy loss can be calculated as follows

LCE
i = −

∫
[y+i log pi1 + y−i log pi0]f

post(pi1, pi0; e
+
i , e

−
i , a

+
i , a

−
i )dp

= y+i
(
ψ(Si)− ψ(e+i + a+i )

)
+ y−i

(
ψ(Si)− ψ(e−i + a−i )

)
,

(5)

where Γ (·) is gamma function, Si = e+i + e−i +2, and ψ(·) is digamma function.
In order to minimize the evidence for the incorrect category while main-

taining the evidence for the correct category at a constant level, we intro-
duce a regularization loss term, which is defined as the KL divergence between
f
(
pi1, pi0; α̃i, β̃i

)
and fprior

(
pi1, pi0; a

+
i , a

−
i

)
LKL
i = KL

[
f
(
pi1, pi0; α̃i, β̃i

)
∥ fprior

(
pi1, pi0; a

+
i , a

−
i

)]
=

(
α̃i − a+i

)
ψ (α̃i) +

(
β̃i − a−i

)
ψ
(
β̃i

)
+

(
2− α̃i − β̃i

)
ψ
(
α̃i + β̃i

)
+ log

B(a+i , a
−
i )

B(α̃i, β̃i)
,

(6)

where α̃i = y−i (e
+
i + a+i ) + y+i a

+
i , β̃i = y+i (e

−
i + a−i ) + y−i a

−
i .
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The following theorem can be deduced in order to analyse the enhancement of
prediction that arises from by integrating clinical knowledge as semantic priors.
Theorem In the case of PL sample, if prior evidence a+ > a−, or in the case
of the sample in the control group, if prior evidence a+ < a−, it is possible to
incur a greater loss of prediction without prior evidence, LENN > L.
Proof: The prediction loss LENN of EDL backbone can be calculated as follows
with uniform prior distribution (a+ = a− = 1)

LENN =y+
(
ψ(S)−ψ(e+ + 1)

)
+ y−

(
ψ(S)−ψ(e− + 1)

)
. (7)

The prediction loss L of EDL which integrates prior evidences a+ and a− is

L=y+
(
ψ(S)−ψ(e+ + a+)

)
+ y−

(
ψ(S)−ψ(e− + a−)

)
. (8)

Because a+ > a−, a++a− = 2, we have e++a+ > e++1 and e−+a− < e−+1.
Furthermore, given that the sample is PL, we have y+ = 1 and y− = 0. According
to ψ(·) increases monotonically on the interval (0,+∞), we can infer that

y+
(
ψ(S)− ψ(e+ + 1)

)
> y+

(
ψ(S)− ψ(e+ + a+)

)
,

LENN > L. (9)

For the sample in the control group, we have similar proof. □
The derivation proof of the theorem enables the selection of suitable prior

evidence that is consistent with the target labels. This helps to minimise pre-
diction loss to enhance classification accuracy and stability while reducing data
dependency and improving model interpretability.

3 Experiments

Our dataset comprises 126 3D CT images collected from patients who underwent
CT urography at Changhai hospital over eight years, reflecting PL’s rarity (in-
cidence: 0.6-1.7/100,000) [3] and male predominance (male-to-female ratio 18:1)
[24], with 62 male PL cases and 64 age and BMI-matched male controls.
Implementation Details. The evidential ViT backbone (input: 224×224×64,
downsampled for GPU constraint) is trained on 80% of the data with SGD
(learning rate is 0.005), 8×8×8 patch size, and batch size 1.

The experiments consist of ablation studies to verify the impact of integrating
prior knowledge and comparisons with state-of-the-art (SOTA) methods.

Table 1: Ablation studies of integrating various amounts of semantic radiomics.

Features Number of Features
1 2 3 4

DBR ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
CR ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
ABS ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
RPFV ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
ACC(%) 75.0 75.0 87.0 70.8 75.0 75.0 75.0 79.2 83.3 87.0 83.3 79.2 70.8 79.2 87.5
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Table 2: Ablation studies of
integrating semantic radiomics.
(W/O: Without, W/: With)

Methods W/O prior W/ prior

Evi-ResNet [25] 50.00 75.00
Evi-DenseNet [26] 62.50 70.83
Evi-ViT [27] 66.67 87.50

Table 3: Ablation studies of
integrating semantic radiomics

under different conditions.

Method Train Test Accuracy(%)

Evi-ViT
- - 66.67
✓ - 70.83
- ✓ 83.33
✓ ✓ 87.50

3.1 Ablation study

In the following experiments, we validate the effectiveness of EDL backbone,
which incorporates expert knowledge, aiming to show its ability to improve di-
agnostic accuracy and reduce the dependency of model on large datasets.
Validating the Improvement of Model Accuracy. Comparative experi-
ments on multi-prior integration (1-4 features) into evidential ViT demonstrate
that fusing all four semantic radiomics yields optimal accuracy (87.5%), out-
performing individual or partial combinations and highlighting feature fusion in
enhancing model performance (Table 1).

Additionally, ablation studies across three EDL-based models confirm the
necessity of semantic radiomics integration, with prior knowledge consistently
improving accuracy (Table 2). We further validate three fusion strategies for
evidential ViT: 1) priors in training only, 2) priors in testing only, and 3) joint
training-testing fusion (our method). Table 3 shows that our method (train +
test) achieves the best performance.

In addition, Fig. 3 demonstrates the limitations of pure image-driven eviden-
tial ViT: misclassifying high-fat cases with deformation as controls (Fig. 3(a))
and low-fat cases without deformation as PL (Fig. 3(b)). It also fail in con-
fusing situations: low-fat cases with deformation (Fig. 3(c)) or high-fat cases

Evi-ViT Evi-ViT + prior (Train) Evi-ViT + prior (Test) Evi-ViT + prior (Train + Test)
p1 = 0.46 

p1 = 0.45 

p0 = 0.32 

p0 = 0.49 

p1 = 0.85

p1 = 0.53

p0 = 0.51

p0 = 0.76
p1 = 0.78

p1 = 0.48

p0 = 0.48

p0 = 0.68

p1 = 0.51

p1 = 0.48

p0 = 0.41

p0 = 0.51

(a) 

(c) 

(b) 

(d) 

Fat Bladder Seminal Vesicle Rectum
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(c) 𝐷 = 13.48𝑚𝑚, 𝑅 = 0.72, 𝜃 = 81.49°, 𝑉 = 0.28 

(b) 𝐷 = 3.94𝑚𝑚, 𝑅 = 0.68, 𝜃 = 80.02°, 𝑉 = 0.28 

(d) 𝐷 = 6.97𝑚𝑚, 𝑅 = 0.71, 𝜃 = 93.31°, 𝑉 = 0.48 

Fig. 3: Cases of PL prediction improvements
brought by prior evidences. "Green ticks" in-
dicate correct predictions and "red crosses"
denote errors. ((a)(c): PL, (b)(d): Control)
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without deformation (Fig. 3(d)), which other models except our method also
misdiagnose. This demonstrates that relying only on image data or single-stage
fusion (introducing priors separately in training or testing) fails to capture such
nuanced features. In contrast, our cross-stage fusion strategy, which integrates
semantic radiomics in both training and testing, effectively distinguishes organ
deformation, particularly in the context of diagnosing intricate samples.
Validation of Data Dependency. The integration of semantic radiomics sig-
nificantly enhances model robustness under data scarcity by encoding clinical
expertise as prior knowledge (Fig. 4). While EDL-based models exhibit catas-
trophic performance degradation with limited data, our framework maintains
diagnostic reliability by fusing prior aligned with clinical diagnostic experience.

3.2 Comparison with SOTA Methods

Our method outperforms against three categories of approaches (Table 4):
1) Manual feature-based machine learning (Logistic Regression, Shallow Neural
Networks (ShallowNN)); 2) Adaptive DNNs (ResNet, DenseNet, ViT, evidential
DenseNet (Evi-DenseNet), evidential ViT (Evi-ViT)); 3) Knowledge-integrated
DNNs (SVD-Net, ViT-AD). While DNNs struggle with data scarcity of PL and
have difficulty capturing subtle fat morphology, our EDL-based framework over-
comes these limitations by fusing multi-semantic priors, surpassing both pure
imaging-based DNNs and traditional machine learning through guidance of clin-
ical diagnosis experience. Rigorous paired t-tests on 5-fold cross-validation splits
confirm statistically significant superiority over all baselines (p < 0.01).

Table 4: Accuracy results of various PL diagnosis methods. Results were reported
as mean ± SDs using 5-fold cross validation. The p-value indicates statistical
significance.

Methods Accuracy(%)

Traditional radiomics methods LogisticRegression [28] 81.51±7.87
ShallowNN 81.57±7.14

Adaptive learning methods

ResNet [25] 50.71±3.18
DenseNet [26] 62.59±8.41

ViT [27] 61.83±8.03
Evi-DenseNet 58.75±4.87

Evi-ViT 62.79±6.45

Knowledge-integrated methods
SVD-Net [29] 64.39±6.80
ViT-AD [30] 68.45±8.67

Our Method 83.51±6.89

p-value 2.04e-05
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4 Conclusion

Traditional DNNs frequently misclassify PL due to limited data and adaptive-
learned representations that do not match clinical diagnostic standards. Our
evidential DNN framework overcomes this by integrating clinically validated
morphological priors, enhancing diagnostic accuracy and interpretability while
demonstrating robust performance in our partner hospital clinical deployment.
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