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Abstract. Multiple instance learning (MIL) has shown significant promise
in histopathology whole slide image (WSI) analysis for cancer diagno-
sis and prognosis. However, the inherent spatial heterogeneity of WSIs
presents critical challenges, as morphologically similar tissue types are of-
ten dispersed across distant anatomical regions. Conventional MIL meth-
ods struggle to model these scattered tissue distributions and capture
cross-regional spatial interactions effectively. To address these limita-
tions, we propose a novel Multiple instance learning framework with
Context-Aware Clustering (MiCo), designed to enhance cross-regional
intra-tissue correlations and strengthen inter-tissue semantic associations
in WSIs. MiCo begins by clustering instances to distill discriminative
morphological patterns, with cluster centroids serving as semantic an-
chors. To enhance cross-regional intra-tissue correlations, MiCo employs
a Cluster Route module, which dynamically links instances of the same
tissue type across distant regions via feature similarity. These semantic
anchors act as contextual hubs, propagating semantic relationships to
refine instance-level representations. To eliminate semantic fragmenta-
tion and strengthen inter-tissue semantic associations, MiCo integrates
a Cluster Reducer module, which consolidates redundant anchors while
enhancing information exchange between distinct semantic groups. Ex-
tensive experiments on two challenging tasks across nine large-scale pub-
lic cancer datasets demonstrate the effectiveness of MiCo, showcasing
its superiority over state-of-the-art methods. The code is available at
https://github.com/junjianli106/MiCo.
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1 Introduction

Whole Slide Images (WSIs) provide comprehensive and detailed representations
of cellular morphology and the tumor microenvironment, both of which are cru-
cial for accurate diagnostic evaluation and prognostic assessment [2,3,21,6]. How-
ever, histopathological WSIs often exhibit extremely high resolutions, reaching
up to 100,000 x 100,000 pixels. The high resolution of WSIs, along with the
absence of pixel-level annotations, presents significant challenges in their anal-
ysis and modeling [12,14,9,17,8]. Although Multiple Instance Learning (MIL)
has emerged as a paradigm for weakly supervised WSI analysis [1,20], existing
methods still struggle to handle the spatial complexity of WSIs.

Despite their capability in extracting discriminative features from local im-
age patches, current foundation models still struggle with the challenge of spa-
tial heterogeneity in pathological structures. This core limitation manifests at
two interrelated levels: a failure to capture both fine-grained cellular arrange-
ments and broader tissue architecture. At the macroscopic level, key structures
of the same histological type are often discontinuously distributed as multi-focal
sites across distant regions. For instance, lesions of lymphovascular invasion or
perineural invasion may span multiple anatomical planes [11,13]. This spatial
separation hinders the model from learning the intrinsic correlations among in-
stances that belong to the same pathological class but are located in different
regions. At the microscopic level, each of these distributed structures interacts
with a highly heterogeneous cellular microenvironment, forming complex local
pathological patterns that require simultaneous modeling of local discriminative
features and cross-regional semantic dependencies.

Despite significant progress, existing MIL methods still struggle to model
long-range dependencies between pathologically related regions that are mor-
phologically distant, a challenge arising from the inherent spatial heterogeneity
of WSIs. For instance, traditional attention-based MIL methods (e.g., AMIL [5])
leverage attention mechanisms to dynamically identify and aggregate critical in-
stances, which tend to focus on instance-level feature learning but fail to capture
the semantic relationships between distant pathological regions. Transformer-
based methods (e.g., TransMIL [15]) use transformers to learn the global con-
textual information of WSIs but treat all interactions as homogeneous, failing
to capture dynamic heterogeneity interactions across the tumor microenviron-
ment. Graph-based methods (e.g., PatchGCN [1]) rely on fixed neighborhood
definitions, while hierarchical methods like HVTSurv [16] restrict local learning
to pre-determined sub-regions, both inadequate for modeling tissue-level mor-
phological continuities across spatial distributions.

To overcome these limitations, we propose MiCo, a novel Multiple Instance
Learning framework with Context-Aware Clustering. MiCo employs a Cluster
Route module to enhance intra-tissue semantic associations by aggregating and
propagating information from dispersed patches of the same tissue type, refining
instance-level representations. Additionally, MiCo integrates a Cluster Reducer
module to eliminate semantic fragmentation and strengthen inter-tissue seman-
tic associations, consolidating semantically redundant anchors while preserving
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Fig.1: Overview of MiCo. MiCo consists of multi-layered context-aware clus-
tering modules. Each module is organized by a Cluster Route module, which
aggregates and propagates semantic information, and a Cluster Reducer mod-
ule, which consolidates redundant anchors while enhancing information exchange
between semantically distinct anchors.

pathological diversity. Extensive experiments on two challenging tasks across
nine large-scale public cancer datasets validate MiCo’s effectiveness, showcasing
its superior performance over state-of-the-art methods in survival prediction and
cancer subtyping tasks.

2 Methodology

2.1 Overview of MiCo

To address the challenges of spatial heterogeneity in histopathological WSIs, we
propose MiCo, a novel MIL framework with Context-Aware Clustering. As il-
lustrated in Fig.1, MiCo consists of multi-layered context-aware clustering mod-
ules, each organized by two core components: the Cluster Route (CluRoute)
module and the Cluster Reducer (CluReducer) module. MiCo begins by cluster-
ing instances to distill discriminative morphological patterns, with cluster cen-
troids serving as semantic anchors. The CluRoute dynamically links instances
of the same tissue type across distant regions based on feature similarity, aggre-
gating and propagating semantic information to refine instance-level features.
The CluReducer consolidates redundant anchors while facilitating information
exchange between distinct semantic groups, thereby eliminating semantic frag-
mentation and strengthening inter-tissue semantic associations. Then, the refined
instances and anchor features are fused, and an attention pooling mechanism is
applied to enable the model to focus on the most task-relevant information.
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2.2 WSI Preprocessing

Given a WSI W, we first crop the tissue regions into non-overlapping patches
{pj’m}ivf:17 where the total number of patches varies per WSI. Each patch is
encoded into a feature vector h;,, € R? using the CONCH v1.5 [4], a multi-
modal whole-slide foundation model pre-trained with self-supervised and vision-
language objectives. This process produces a feature matrix H; € RM*? for
each WSI. To simplify notation, we drop the subscript j. To initialize semantic
anchors, we apply K-means clustering on the training instances, obtaining clus-
ter centers S = {sk}le. These centers serve as semantic anchors representing
distinctive tissue patterns.

2.3 Context-Aware Clustering

Morphologically similar tissue types are often dispersed across distant anatomi-
cal regions, making it challenging to capture their contextual relationships and
semantic consistency. MiCo addresses this challenge through its multi-layered
context-aware clustering modules, which consist of two core components: the
Cluster Route and the Cluster Reducer. The Cluster Route aggregates and prop-
agates semantic information by linking instances of the same tissue type across
distant regions, while the Cluster Reducer consolidates redundant anchors and
facilitates information exchange between distinct semantic groups.

Cluster Route. Given a WSI containing M instances, each patch p,, is repre-
sented by a feature embedding h,, € R%. To establish cross-regional intra-tissue
correlations, we compute the cosine similarity between each instance feature h;

’ . ’
and K learnable semantic anchors {s;}5_;:

hT Sk
A = m» 1
1(m,k) o | - |5k‘7 ( )

where A; € RM*K / quantifies the semantic alignment between instances and
semantic anchors.

The argmax operation ensures that each instance is assigned to its most
relevant semantic anchor, preserving semantic consistency across pathological
structures. However, argmax is non-differentiable, which disrupts gradient flow
to the anchors. To address this, we use a straight-through estimator [19] to enable
instance-to-anchor assignments while maintaining gradient propagation:

A; = one-hot (arg max(4;)) + A; — sg(A;), (2)

where sg(-) denotes the stop-gradient operator. During forward propagation,

A, € RMxK / is a binary matrix where each row is one-hot encoded, assigning
each instance to its most similar cluster. During backward propagation, gradients
bypass the non-differentiable arg max operation and flow through A;, enabling
end-to-end training.
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For each semantic anchor si, we aggregate the features of its assigned in-
stances to generate a context-aware representation:

M M

_ 1 i A

Sk = Nik; Z Al(m,k) ' hmv Nk = Z Al(m,,k)' (3>
m=1 m=1

where 55, € R? captures shared morphological semantics (e.g., tumor stroma or
immune infiltration) within the anchor group, and Nj denotes the number of
instances assigned to the k-th anchor. This aggregation step unifies spatially
dispersed instances sharing similar semantics, d/irectly mitigating spatial hetero-
geneity. We collect all §;, into a matrix S € RX >4, which serves as the input to
the Cluster Reducer module.

To propagate inter-region context, we align each instance feature h,,, with its
assigned semantic anchor semantics:

By = hon + MLP(hy, + A 1y - 35)- (4)

The updated feature h;n combines instance-level features with cross-regional se-
mantic context, creating a unified representation of spatially dispersed tissue
structures. This enriched feature is then passed to the next context-aware clus-
tering module for further refinement, enabling the model to progressively capture
complex anatomical relationships.

Cluster Reducer. To reduce semantic redundancy, the Cluster Reducer merges
anchors with similar characteristics by modeling inter-anchor relationships. Given

initial semantic anchors S € RE %2 we transpose Sto ST e RI*K and apply
a MLP to model nonlinear interactions:

§ =MLP(ST), (5)

where S° € R¥K /2 represents the refined anchors after redundancy reduction.
The MLP captures semantic dependencies, such as merging scattered tumor-
infiltrating lymphocyte clusters, by consolidating semantically similar anchors.

Transposing S’ back to § € RE /2xd yields compact and meaningful anchors
that preserve essential tissue characteristics.

3 Experiments and Results

3.1 Datasets

Survival Prediction. We use seven publicly available cancer datasets from
TCGA (BLCA, BRCA, GBMLGG, HNSC, KIRC, KIRP, and LUAD)
in our experiments. These datasets collectively include data from 3,523 patients
and 4,091 H&E diagnostic WSIs.

https://portal.gdc.cancer.gov
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Table 1: Survival prediction performance comparison across seven cancer types.
Models BLCA BRCA GBMLGG HNSC KIRC KIRP LUAD |MEAN
AMIL [5] 0.5510.10 0.5760.11 0.7360.15 0.5900.02 0.6810.05 0.7780.04 0.584¢.04 | 0.642
TransMIL [15] 0.6100_07 0‘5550.04 0.7600.14 0‘5650_02 0.6940_()5 0.7730_07 0.5850_09 0.649
DeepGraphConv [10]|0.5630.08 0.5810.10 0.7390.14 0.5910.02 0.681p.02 0.7380.04 0.581¢.02 | 0.639
PatChGCN Il] 0.6070_05 0.6000,12 0.7360_16 0.5840,01 0.6940_05 0.7830,05 0.5820,04 0.655
ILRA [20] 0.6120.04 0.5510.07 0.7220.16 0.6000.01 0.6630.04 0.6880.05 0.5900.04 | 0.632
HVTSUTV [16] 0.6060,05 0.5790,09 0.7920,01 0.5750,03 0.6920,04 0.7780(05 045910,03 0.658
RRTMIL [18] 0.5880.05 0.5420.08 0.7380.16 0.5970.02 0.6990.04 0.7700.06 0.5790.04 | 0.644
WIKG [7] 0.6070.07 0.5820.09 0.7520.16 0.5790.02 0.7040.06 0.7630.00 0.5950.06 | 0.654
MiCo 0.619¢.03 0.608¢.12 0.8130.02 0.605¢.01 0.715¢.05 0.800¢.07 0.604( 04| 0.680

Table 2: Cancer subtyping performance comparison across two cancer types.

Method TCGA-BRCA TCGA-NLCSC MEAN
ACC F1 AUC ACC F1 AUC ACC F1 AUC
AMIL [5] 0.9090.01 0.8580.02 0.9480.01  0.9230.02 0.9230.02 0.979.01  0.916 0.890 0.964

TransMIL [15] 0.9060.01 0.8570.02 0.9450.02  0.9190.02 0.9190.02 0.9770.02  0.913 0.889 0.961
DeepGraphConv [10] 0.9130.01 0.8590.01 0.9470.01  0.9130.02 0.9130.02 0.9690.02  0.913 0.886 0.958
PatchGCN [1] 0.9170.01 0.8710.02 0.9440.02 0.9190.02 0.9190.02 0.9790.01  0.918 0.895 0.962

ILRA [20] 0.8990.01 0.8360.03 0.9310.02  0.9180p.02 0.9180.02 0.9730.02  0.909 0.885 0.952
RRTMIL [18] 0.9100.01 0.8550.01 0.9450.02  0.9150.02 0.9150.02 0.9760.01  0.913 0.890 0.961
WiIKG [7] 0.9150.02 0.8590.03 0.9480.01  0.9200.03 0.9200.03 0.9800.01  0.917 0.889 0.964
MiCo 0.922.01 0.8750.02 0.9520.01 0.9310.02 0.9310.02 0.9810.01 0.927 0.903 0.967

Cancer Subtyping. We conduct comparative experiments on two challeng-
ing public datasets: TCGA-BRCA and TCGA-NSCLC. The TCGA-BRCA
dataset contains 1,034 H&E slides of two invasive cancer subtypes: invasive duc-
tal carcinoma (IDC) and invasive lobular carcinoma (ILC). The TCGA-NSCLC
dataset includes 1,030 H&E slides from two subtypes: Lung Squamous Cell Car-
cinoma (TCGA-LUSC) and Lung Adenocarcinoma (TCGA-LUAD).

3.2 Implementation Details

We compare MiCo with eight state-of-the-art methods: AMIL [5], TransMIL
[15], DeepGraphConv [10], Patch-GCN [1], ILRA [20], HVTSurv [16], RRTMIL
[18], and WIKG [7]. WSIs are preprocessed using CONCH v1.5 [4] to extract
448 x 448 patch features at 20x magnification. All experiments adopt 4-fold cross-
validation, with datasets split into training, validation, and test sets at a ratio
of 60:15:25. The semantic anchor number is set to 64. Training configurations
are unified across methods: 200 epochs, batch size 1, learning rate 2e-4, and
early stop 8. Survival prediction performance is evaluated using the Concordance
Index (C-Index) with standard deviation, while cancer subtyping is assessed via
Accuracy (ACC), Fl-score (F1), and Area Under the Curve (AUC) metrics.

3.3 Results and Discussion

Survival Prediction. The experimental results demonstrate the superior per-
formance of MiCo across seven cancer types for survival prediction tasks. As
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Fig. 2: A. Qualitative results of cluster assignment, showcasing WSI thumbnails,
cluster assignment results, and corresponding regions of interest (ROIs) at differ-
ent stages. Blue outlines denote ground truth tumor regions, while areas assigned
to the same cluster are displayed in identical colors. The green arrows highlight
how spatially distant regions are progressively aggregated into a single, seman-
tically consistent cluster. B. Interpretability analysis of MiCo, with red regions
in the heatmaps indicating areas of high attention.

shown in Table 1, MiCo achieves a mean C-index of 0.680, outperforming all
other methods. This performance underscores the effectiveness of MiCo’s context-
aware clustering in addressing the challenges posed by spatial heterogeneity in
histopathological WSIs. MiCo’s ability to model cross-regional dependencies and
enhance semantic associations across dispersed tissue regions enables it to cap-
ture complex morphological patterns and improve survival prediction accuracy.
Cancer Subtyping. The experimental results for cancer subtyping, as pre-
sented in Table 2, demonstrate MiCo’s superior performance across two main
datasets, TCGA-BRCA and TCGA-NLCSC. MiCo achieves state-of-the-art re-
sults in terms of accuracy, F1 score, and AUC, outperforming all other methods.
With a mean ACC of 0.927, MiCo significantly surpasses the best-performing
baseline, PatchGCN, which achieves a mean ACC of 0.918. These results high-
light MiCo’s ability to accurately classify cancer subtypes by leveraging its
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0s Table 3: Average results of the ablation

]
Eos oo study for MiCo.
s Ve
e Method Survival Prediction Cancer Subtyping
C-Index ACC F1 AUC
U L e o s o s w/o Semantic Anchors Init 0.668 0.922 0.896 0.964
& & Y S & w/o CluReducer 0.659 0.921 0.897 0.965
& w/o CluRoute 0.656 0.910 0.890 0.955
MiCo 0.680 0.927 0.903 0.967

Fig.3: Analysis of semantic an-
chors’ impact.

context-aware clustering mechanism and dynamic semantic anchors, effectively
alleviating the challenges of spatial heterogeneity and semantic fragmentation in
histopathological WSIs.

Ablation Study. To further determine the efficacy of each crucial component in
MiCo, we conduct a series of ablation studies on survival prediction and cancer
subtyping tasks. The average results, as summarized in Table 3, underscore the
critical importance of each module in enhancing the overall performance of MiCo.
The ablation experiments evaluate the impact of removing key components, in-
cluding semantic anchor initialization, the CluReducer, and the CluRoute. Re-
moving semantic anchor initialization reduces the C-index to 0.668, underscoring
its importance in capturing discriminative morphological patterns. Omitting the
CluReducer further decreases the C-index to 0.659, highlighting its role in con-
solidating redundant anchors and enhancing inter-anchor information exchange.
Similarly, removing the CluRoute results in a C-index of 0.656, demonstrating
its effectiveness in establishing cross-regional semantic relationships and refining
instance-level representations.

Interpretability Analysis. As shown in Fig.2, we analyze MiCo’s interpretabil-
ity through cluster assignments and heatmaps. Fig.2.A demonstrates that clus-
ter assignments of semantically related regions are progressively merged across
stages, preventing overly coarse representations in later phases. The Cluster Re-
ducer module halves cluster numbers at each stage of the MiCo.This progressive
reduction aims to intelligently refine and consolidate semantic information,rather
than causing coarseness or indiscriminately mixing distinct regional information.
The heatmap results further reveal strong alignment with ground truth tumor
annotations in Fig.2.B.

Semantic Anchors Analysis. As shown in Fig.3, we evaluate MiCo’s survival
prediction performance with different numbers of semantic anchors (32, 64, and
128). The mean C-index values are 0.674 (32 anchors), 0.680 (64 anchors), and
0.667 (128 anchors). The 64-anchor configuration achieves the highest mean C-
index, balancing morphological diversity and redundancy.
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4 Conclusion

In this paper, we propose MiCo, a novel Multiple Instance Learning frame-
work with Context-Aware Clustering, designed to tackle spatial heterogene-
ity in histopathological WSIs. MiCo incorporates a Cluster Route module to
strengthen cross-regional intra-tissue correlations and a Cluster Reducer module
to consolidate redundant anchors while promoting information exchange between
distinct semantic groups. Extensive experiments on nine cancer datasets validate
MiCo’s superiority over state-of-the-art methods in both survival prediction and
cancer subtyping tasks.
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