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Abstract. Fluorescent staining is crucial for studying the morphology
and dynamics of subcellular structures in biological and medical research,
though being slow, expensive, and causing phototoxicity in live cells.
Existing methods use deep generative models for image-to-image trans-
lation to generate diverse fluorescent images of subcellular structures.
However, the pixel-level image generation approaches struggle to pre-
serve fine structural details during the reconstruction process. In this
paper, we introduce DiffStain, a novel approach that leverages mask-
guided diffusion models for semantic virtual staining. The goal is to gen-
erate fluorescent images based on a brightfield input image. Rather than
relying on deliberately selected image filters for subcellular structure
segmentation, our approach employs an unsupervised deep neural spec-
tral clustering method to combat the noisy and ambiguous structural
boundaries. We also integrate mask guidance into the reverse denoising
process, which helps highlight the regions of the subcellular structures
that require precise representation in the generated fluorescent images.
The masks produced by the spectral clustering model provide valuable
feedback, enabling iterative refinements of the fluorescent images. Ex-
periments showcase that our DiffStain method achieves state-of-the-art
virtual staining performances on public microscopy datasets. Code is
available at: https://github.com/StrengthInNumber/DiffStain.

Keywords: Conditioned diffusion model - Fluorescent image - Mask
guidance - Semantic virtual staining.

1 Introduction

Fluorescence microscopy is essential for monitoring the morphology and dy-
namics of subcellular structures in biological and medical image analysis [24, 3,
22,17]. However, fluorescence staining is expensive, time-consuming, and poses
risks of phototoxicity and photobleaching, particularly in live cells [10,21]. In
silico painting, which pioneered virtual staining, uses pixel-to-pixel translation
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to convert label-free transmitted light microscopy images into organelle-specific
fluorescence images [16, 7]. Virtual staining offers non-invasive, non-destructive
imaging, enabling the analysis of subcellular structure shape, function, and phys-
iological characteristics [5,18,1,12]. Compared to traditional staining, virtual
staining improves acquisition speed and multiplexing capabilities, supporting
downstream tasks of organelle detection and registration, which are key for gen-
erating statistical models of subcellular structures [25,2]. Deep learning tech-
niques, such as CNNs [23], U-Nets [11], conditional GANs [9,19], and trans-
formers [26], have been applied to label-free virtual staining. Task-aware priors
[30] and sparse view schemes [29] have been explored for 3D subcellular struc-
ture prediction [12]. Wieslander et al. [27] employed dense U-Nets and GANs
for cell painting, integrating parallel virtual staining with the segmentation of
nuclei. Given the diverse morphologies and dynamics of subcellular structures,
powerful image generators are desirable to highlight the subcellular structures
in the output fluorescence images.

Diffusion models have gained prominence for image generation due to their
superior performance through iterative denoising and flexible distribution mod-
eling. Unlike GANSs, which can experience mode collapse and training instability,
diffusion models are easier to train and can generate high-quality, diverse images
probabilistically, starting from Gaussian noise. However, editing style codes in
diffusion models to achieve fine-grained structure reconstruction remains chal-
lenging. Conditioned diffusion models have been applied to fluorescent image
generation [8,14], where models minimize the distance to the input [6] or de-
noise from noisy input images [13]. Class-guided denoising diffusion probabilis-
tic models have been used for fluorescence image reconstruction, with carefully
prepared class priors guiding the denoising process [8]. However, pixel-wise im-
age generation often modifies the entire image to align with the target domain’s
distribution, which can lead to the loss of local structural details.

In this paper, we introduce DiffStain, a novel framework for generating sub-
cellular structure-specific fluorescent images from brightfield images, as shown
in Fig. 1. DiffStain uses a conditioned diffusion approach, where subcellular
structure masks guide the iterative denoising process. Instead of relying on pre-
selected image filters for subcellular structure segmentation, we propose a deep
neural spectral clustering (NSC) module to extract masks from fluorescent im-
ages. By leveraging pre-trained DINOVIT features [15] and k-means clustering in
the spectral embedding space, our unsupervised NSC model effectively identifies
subcellular structures from noisy or ambiguous fluorescent images. To enhance
the fluorescence image generation process, we incorporate mask guidance dur-
ing online inference. The NSC-generated masks are fed back into the denoiser,
ensuring the iterative denoising process highlights the subcellular structures of
interest. We evaluate the effectiveness of the proposed DiffStain through ex-
tensive experiments on public microscopy datasets, demonstrating superior per-
formances over existing methods. The main contributions of this work are as
follows:
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Fig. 1. Overview of our conditioned diffusion-based semantic virtual staining frame-
work with mask guidance. The noisy brightfield images are used to condition the denois-
ing process to generate multi-channel fluorescence images specific to various subcellular
structures. We present an unsupervised deep neural spectral clustering (NSC) module
to generate masks, which serves as a guide of the denoiser to highlight the structures
of interest in the online inference of fluorescence images. NSC takes advantage of the
pre-trained DINOVIT features to build a patch graph and compute the joint spectral
embedding using an augmented affinity matrix regarding an anchor image, followed by
the k-means clustering in the spectral embedding space.

— We present DiffStain, an efficient mask-guided conditioned diffusion model
for generating subcellular structure-specific fluorescence images from bright-
field images.

— We introduce an unsupervised NSC-based masking scheme, which enables
the efficient identification of subcellular structures, and incorporates the
mask guidance into the denoising process to enhance online virtual stain-
ing by highlighting subcellular structures of interest.

— We validate DiffStain through extensive experiments, demonstrating its su-
periority over state-of-the-art methods on public microscopy datasets.

2 Method

Fig. 1 provides an overview of our proposed method, which is based on a diffusion-
based image translation framework that follows the corrupt and reconstruct
paradigm. Considering the diverse morphologies of subcellular structures, the it-
erative conditioned denoising process can lead to noisy and ambiguous structural
boundaries in the fluorescent images. To preserve large amounts of fine-grained
subcellular structures during the virtual staining process, we introduce a mask-
guided denoising scheme by using structural masking to emphasize regions of
interest. In each iteration, subcellular shapes embedded in the spatial masks are
used to guide the reconstruction of fluorescence images, with these masked areas
indicating various types of subcellular structures. We present an unsupervised
deep neural structure clustering (NSC) model for subcellular structure segmen-
tation in a low-dimensional spectral embedding space by leveraging the eigen-
decomposition of a graph Laplacian matrix, which is robust to high-frequency
noise and image artifacts. The estimated masks provide feedback during online
inference for iterative refinement of fluorescent images.
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2.1 Conditioned Diffusion Model for Virtual Staining

Diffusion models enable diverse image generation by progressively denoising ran-
dom Gaussian noise to produce images that match a target distribution. We
employ the conditional diffusion models [20] for the image-to-image translation
from the brightfield image x to multi-channel fluorescent images y by denoising
an input image with a form of p(y|x). The diffusion model consists of two main
processes: the forward diffusion process and the reverse denoising process. In the
forward process, Gaussian noise is iteratively added to the image in a Markovian
fashion. The forward process is defined as: q(y¢|yi—1) = N (ye; V1 — Beyi—1, B 1),
where B; denotes the noise variance at step t. The image at time step y; is con-
ditioned on the original image o, and the transition is defined as: q(yt|yo) =
N (ye; v/owyo, (1—on)I), where oy = szl(l—ﬁi) represents the cumulative effect
of noise over time.

In the reverse denoising process, the model aims to reconstruct the origi-
nal image by training a neural network ey to predict the noise at each step.
The reverse process is described by the conditional probabilistic distribution:
po(ye—1|yt) = N(ys—1; po(ye, x,t), BeI), where pg(y, x,t) is the learnable mean
of the distribution. Using Langevin dynamics to estimate the gradient of the
data log-likelihood, the iterative reverse denoising process can be written as:

Y1 = \/% (yt - \}%@(%yt,at)) + V1 — Bies. (1)

The neural network €y is trained by minimizing the distance between the ac-
tual noise and the predicted noise at each time step, and the loss function

Laim = Eeun(0,1),t,(z.9),0 Heét) (z, 9, ) — EH . The loss function corresponds to
1

maximizing the likelihood with respect to the weighted variational lower bound.

By minimizing the loss function, both pg(yy, z,t) and eét)(x, Yt, ) are optimized

to conduct the image translation and produce high-fidelity fluorescent images.

2.2 Neural Spectral Clustering

We introduce NSC, an unsupervised method for subcellular structure segmenta-
tion from fluorescence images in the spectral embedding space. Unlike traditional
interactive image filters and operators, NSC leverages a pre-trained DINOViT
features [15] and spectral clustering to combat high-frequency perturbations in
identifying fine-grained structures. The workflow of NSC is shown in Fig. 1. Given
a fluorescence image y € R™*"*!_ the goal is to estimate a subcellular structure
mask z € {0,1}™*"*! where [ represents the channel number corresponding to
various subcellular structures.

First, we build a patch graph from the fluorescence image using pre-trained
DINOVIT features, which capture long-range relationships between repetitive
fine-grained structures through self-attention. To account for the fine granularity
of subcellular structures, the image is subdivided into small fields of view (FOVs)
image ys € R?7*Y, where the patch size is comparable to subcellular structures.
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Next, we perform eigendecomposition on the graph Laplacian matrix of the
patch graph. Rather than conducting independent spectral clustering on each
small FOV image, we apply joint spectral embedding to avoid spectral distor-
tion and inconsistent cluster assignments across the small FOV image. This is
achieved by augmenting the affinity matrix with information from an anchor im-
age 1, ensuring consistent subcellular structure identification across images. The

Aa Aa—s
Ag—s AS
both inter- and intra-image patch-wise relationships. A, and A denote the affin-
ity matrix of the anchor and the small FOV images. A,_; denote the patch-wise
affinity between y, and y,. The augmented affinity matrix A € R2w*2 g calcu-

~ T
lated using cosine similarity, and A;; = % @(FiFjT > 0), where F; and F;
i J

represent the DINOVIT features of patches ¢ and j. n, denotes the patch number
of a small FOV image. The normalized Laplacian matrix L = I — D~ Y/2AD~1/2,

where D is the degree matrix with D;; = > ; /Lj, is used for spectral clustering.

augmented affinity matrix is defined as: A = [ , which accounts for

The eigenvectors ¥ € R2™»*" corresponding to the first 7 non-zero eigenvalues
provide the spectral embedding of the fluorescence images.

Finally, we apply k-means clustering to the spectral embedding and gener-
ate a clustering assignment matrix @ € {0, 1}2"»**. Using the shared anchor
image, we synchronize cluster assignments across small FOV images through a
cross-image label mapping function 6; ; : {1,...,k} — {1,...,k} from image ¢
to image j, and 6; j(u) = v when v = argmax,-|Q; |, - |Qj]+. operator |-],
returns the first n, dimensional vector of column u. k-means clustering on ¥ is
robust to high-frequency noise in the fluorescence images, ensuring reliable seg-
mentation. Moreover, the joint spectral embedding via an anchor image ensures
consistent clustering label assignments, avoiding additional cross-image cluster
synchronization.

2.3 Mask Guided Denoising

In pixel-wise image translation for virtual staining of multi-channel fluorescence
images, it is crucial to preserve fine-grained subcellular structures during the
image generation process. We introduce a mask guidance scheme with respect
to various subcellular structures, which enhances the iterative denoising process
by put focus on subcellular shapes embedded in the NSC-based masking. We
add noise to the mask obtained by NSC through the forward process of the
diffusion model, and take the noised mask as y; for the reverse denoising. The
mask-guided process is defined as:

y=vVar-z+V1l—ape, e ~N(OI). (2)

The mask z obtained by NSC can filter the high-frequency noise in the sub-
cellular structure image generated at the early stages, and the low-frequency
information such as the general contours and semantic features can be retained
in the forward process. The mask guidance enhances pixel generation in the
regions of interest, allowing for semantic-aware denoising and further plausible
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generation of subcellular structural details. The semantically aware denoising
approach ensures that the final output highlights subcellular structures by mod-
eling both the distribution of the input brightfield image and the desired features
of the target fluorescence images.

3 Experiments

Datasets and Metrics. We evaluated the proposed approach using the publicly
available JUMP Cell Painting dataset (cpg0000) from the Cell Painting Gallery
on the Registry of Open Data on AWS [4]. We use ten plates with each repre-
senting different biological phenotypes. Each plate contains 2,000 images with
five fluorescent image channels, including nucleus (DNA), endoplasmic reticulum
(ER), cytoplasmic RNA (RNA), Actin, Golgi, plasma membrane (AGP), and mi-
tochondria (Mito), as well as three-channel light field images. Specifically, the
images were corrected using the appropriate illumination correction function,
after which they were normalized and re-sampled to a resolution of 512x512.
A maximum pixel intensity cutoff was applied to exclude extreme outliers. The
dataset was randomly split, using nine plates for training and one for testing.

For evaluation, we used four metrics, including Mean Squared Error (MSE),
Mean Absolute Error (MAE), Pearson Correlation Coefficient (PCC), and Struc-
tural Similarity Index Measure (SSIM), to assess the consistency between the
generated fluorescence images and the ground truth.

Input 3-channel
Brightfield Image

o

Ours

-
o
AGP A ER DNA

Mito RN,

Fig. 2. Two sampled cases of fluorescence image prediction regarding five types of
subcellular structures. The ground truth is shown side-by-side.

Implementation Details. The proposed approach was implemented on a ma-
chine with an NVIDIA 3090 GPU, utilizing the PyTorch framework. The batch
size and the learning rate are set to 1 and 5e~*. We use a patch graph with
np—=4096 nodes. The resolution of the small FOV image is set to 224x224, as
the pre-trained DINOv2 model [15] and ¢=224. The patch size is set to 8x8.
The eigenvector number r and cluster number k are set to 5. The training pro-
cess required approximately 200 iterations and 8 hours. During inference, the
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denoising step was set to 2,000 iterations. The average inference of a 512 x 512
five-channel fluorescence image requires 3 minutes.

Results. We first demonstrate the efficacy of the proposed approach on virtual
staining on brightfield images. Fig. 2 shows the side-by-side comparison of the
predicted fluorescence images and the ground truth. Our method exhibits con-
sistency on all five channels with the ground truth with an average PCC of 0.862
and an SSIM of 0.636 (Table 1). Note that the proposed DiffStain is feasible to
identify fine-grained subcellular structures with a large variety of morphologies
and orientations from the input brightfield images. Moreover, our method retains
the structural shape and distributions during generating fluorescence images.

Table 1. Quantitative results on virtual staining by compared methods. per and tar
denote using labels of perturbations and targets respectively. T denotes using masks
from adaptive thresholding.

Average RNA ER
MSE| MAE| PCCt SSIMT MSE| MAE| PCCt SSIMt MSE| MAE| PCCt SSIM?T

U-Net [11]  0.016 0.095 0.818 0.511 0.015 0.081 0.847 0.560 0.016 0.096 0.830 0.514
DoDNet [28] 0.015 0.091 0.820 0.550 0.013 0.080 0.864 0.610 0.015 0.097 0.824 0.546
Classper [8]  0.029 0.131 0.782 0.409 0.019 0.119 0.868 0.510 0.020 0.123 0.820 0.482
Classtar [8] 0.030 0.135 0.780 0.401 0.019 0.119 0.860 0.519 0.019 0.119 0.824 0.479
Palette [20] 0.025 0.129 0.801 0.465 0.019 0.111 0.868 0.526 0.020 0.119 0.832 0.485
Palettet [20] 0.015 0.089 0.831 0.568 0.011 0.078 0.898 0.649 0.015 0.095 0.851 0.600

DiffStain 0.014 0.088 0.862 0.636 0.011 0.076 0.914 0.696 0.014 0.093 0.881 0.655

Comparison. We summarize the main comparison results of virtual staining on
fluorescence images regarding five subcellular structures in Table 1 and Fig. 3.
Our DiffStain is compared with state-of-the-art baseline approaches, including
U-Net [11], DoDNet [28], Palette [20], and class-guided diffusion [§]. DiffStain
benefits from the mask guidance and is effective in generating fluorescence images
with emphasis on structures of interest, yielding sharper inter-structure bound-
aries and consistently outperforming compared methods across all reported met-
rics. We notice that the images generated using convolutional encoder-decoder
models are limited to account for fine-grained structures [11, 28], where the U-Net
and task-coded decoder learning tend to produce smooth and blurry structural
contours. The task coding concerning the various subcellular classes is feasible
to relieve model complexity by learning one decoder to generate multi-channel
fluorescence images, though the simple concatenation of task codes with the
feature embedding is limited in generating high-quality images.

The diffusion model is feasible to produce high-quality and natural fluo-
rescence images conditioned on input brightfield data which is able to generate
structures in alignment with the ground truth. However, it is not a trivial task to
capture the structures of interest via the pixel-level generation. We found phan-
toms in the conditioned diffusion model Palette [8], where the generated images
bear irrelevant structures not exist in the input brightfield images. The class la-
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bels provide additional information for fluorescence image generation, though the
class label serves as a global prior and cannot ensure to produce local fine-grained
structural details [8]. Moreover, we observe performance gains for the conditioned
diffusion model with mask guidance. For instance, the Palettet with the mask
guidance achieves an SSIM gain of 0.013. By incorporating rich semantic infor-
mation into the denoising process, our method outperforms the compared dif-
fusion model-based staining methods with PCC gains of 0.031 (Palettet), 0.061
(Palette), 0.082 (Classqr), and 0.080 (Classpe,). The proposed DiffStain exploits
the conditioned diffusion models and mask feedback from the unsupervised NSC
model to ensure accurate and detailed subcellular structure identification and
fluorescence image generation.

nput DoDNet [28 Palette [20 Qurs nput DoDNet [28] Palette 20] Ours
- - : |
£

s

Fig. 3. Qualitative comparison for five-channel fluorescent images prediction from
brightfield images.

2
3

Ablation Study. We assess the effectiveness of the mask guidance in Table
1. We remove the mask guidance from the conditioned diffusion model as the
Palette, where the brightfield image is used as the input to generate the fluo-
rescence images. Removing the mask guidance leads to a drop of 0.171 in SSIM
and 0.061 in PCC, highlighting the importance of the mask guidance. Note that
our approach does not require the manual selection of image operators for mask
generation. In contrast, the proposed NSC method effectively identifies vari-
ous subcellular structures by leveraging joint spectral embedding, demonstrating
robustness to high-frequency noise in fluorescence images. When compared to
Palette}, which uses masks derived through adaptive thresholding, the proposed
DiffStain with NSC-masking achieves SSIM improvements of 0.047 and 0.055 for
RNA and ER-related fluorescence images, respectively, demonstrating the merit
of NSC-masking to guide the denoising process.
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4 Conclusion

We presented DiffStain, a novel diffusion model designed for the virtual staining
of brightfield images. Our method incorporates mask guidance with rich semantic
information into the iterative denoising process, improving the identification of
subcellular structures and enabling the generation of high-quality multi-channel
fluorescence images. Specifically, our work is inspired by recent advancements
in diffusion model-based virtual staining [8]. We augment these methods with
the learnable NSC masking scheme, allowing plausible mask inference insensi-
tive to high-frequency perturbation, as well as efficient mask feedback to the
denoising process. Extensive experiments on microscopy datasets demonstrate
the superiority of our method over previous approaches in virtual staining tasks.
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