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Abstract. In this work, we leverage informative embeddings from foun-
dational models for unsupervised anomaly detection in medical imaging.
For small datasets, a memory-bank of normative features can directly
be used for anomaly detection which has been demonstrated recently.
However, this is unsuitable for large medical datasets as the computa-
tional burden increases substantially. Therefore, we propose to model the
distribution of normative DINOv2 embeddings with a Dirichlet Process
Mixture model (DPMM), a non-parametric mixture model that automat-
ically adjusts the number of mixture components to the data at hand.
Rather than using a memory bank, we use the similarity between the
component centers and the embeddings as anomaly score function to
create a coarse anomaly segmentation mask. Our experiments show that
through DPMM embeddings of DINOv2, despite being trained on natu-
ral images, achieve very competitive anomaly detection performance on
medical imaging benchmarks and can do this while at least halving the
computation time at inference. Our analysis further indicates that nor-
malized DINOv2 embeddings are generally more aligned with anatomical
structures than unnormalized features, even in the presence of anoma-
lies, making them great representations for anomaly detection. The code
is available at https://github.com/NicoSchulthess/anomalydino-dpmm.

Keywords: Unsupervised Anomaly Detection · Dirichlet Process Mix-
ture Model · Foundation Model.

1 Introduction

Anomaly detection focuses on identifying samples that deviate from the norm,
such as the detection of lesions in medical imaging or defects in industrial in-
spection. Here, the norm is defined by normal example samples, for instance by
images of healthy volunteers in medical contexts or intact objects in industrial
settings. Of particular interest is the unsupervised setting, where no anoma-
lous samples are used during training. This avoids introducing unwanted biases
towards certain types of anomalies, does not introduce any potential class im-
balances, and alleviates the need for annotating anomalous samples for each
modality and anatomy.

One line of work to tackle unsupervised anomaly detection (UAD) are recon-
struction-based approaches, where a generative model is trained to reconstruct
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normal images. The underlying hypothesis is that since the model is trained
to reconstruct normal images well, it will do a poor job in anomalous regions
and the reconstruction error will highlight such regions. Popular choices for the
reconstruction model are adaptations of autoencoders [6,24], variational autoen-
coders [34,8,7], masked autoencoders [27], generative adversarial networks [29],
and denoising diffusion probabilistic models [31]. Instead of reconstructing im-
ages, a feature reconstruction objective can be used in a knowledge distillation
setup where a student network is trained on normal data to predict similar fea-
tures to a pretrained teacher network [23]. Then, the embeddings are assumed to
differ between the student and teacher networks for anomalous data while they
are similar for normal data.

Another line of work aims to model the distribution of the features extracted
from normal samples. One choice is to use normalizing flow models to map
the normal patch feature distribution to a tractable distribution [14]. However,
normalizing flow models can assign high probabilities to anomalous samples and
should thus be used with caution for anomaly detection [20,25]. SPADE [9]
constructs a memory bank of normal embeddings and uses the average distance
to k nearest neighbors as an anomaly score for a given sample. PaDiM [11] creates
a probabilistic representation of the features by modeling feature distribution for
each pixel by a multivariate Gaussian. PatchCore [28] and ProtoAD [17] employ
a memory bank as in SPADE, however, both methods compress the memory
bank to reduce its size using a greedy coreset selection and a nonparametric
hierarchical clustering, respectively. AnomalyDINO [10] stores patch features
from DINOv2 [26] using only a few normal images to construct a memory bank.

The comparison with large memory banks usually leads to accurate anomaly
detections, however at the cost of substantially long runtimes and high memory
utilization. Having small yet expressive memory banks is crucial for anomaly
detection on a large scale as it would be required for medical imaging.

In this work, we aim to effectively compress the memory bank of Anomaly-
DINO. We propose to model the patch features using a Dirichlet process mix-
ture model (DPMM) [1,13] with Gaussian component distributions, which is a
Gaussian mixture model without a fixed number of components that instead
determines the necessary number of components based on the data, allowing for
a more flexible, data-driven approach. We fit the DPMM using a batched expec-
tation maximization algorithm [19]. We use the component means as prototypes
for the normal distribution and define the anomaly score as the similarity to
these prototypes. For an overview of our approach refer to Fig. 1.

Our framework achieves competitive performance on the BMAD benchmark [3]
while being highly efficient to compute thanks to the small number of prototypes
in use to model the normative distribution. Further, our analyses indicate that
features from DINOv2 trained on natural images are useful for anomaly detec-
tion in medical imaging, especially after normalization.
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Fig. 1: In the training phase, we fit a Dirichlet process mixture model (DPMM)
with Gaussian components (indicated in red) to the DINOv2 patch embeddings
of the normal samples. After fitting the DPMM to the normal embeddings, we
use the cosine distance between each patch feature and the closest component
mean to obtain a patch-level anomaly score, which we interpolate for a pixel-wise
anomaly map.

2 Methods

2.1 Fitting the Dirichlet Process Mixture Model (DPMM)

Following [19], we fit the DPMM with Gaussian components using a batched
expectation maximization (EM) approach. For this, we consider a DPMM trun-
cated to K components. For sufficiently large K, the truncated DPMM is more
flexible than a standard Gaussian mixture model as components can vanish in
the DPMM if they are not required. We define the probability density of a sam-
ple y under the DPMM with parameters Φ as

p (y|Φ) =
K∑

k=1

πkN (y|θk), (1)

where θk = (µk, Σk) and the component weights {πk}Kk=1 are defined as

πk =


v1, if k = 1

vk
k−1∏
j=1

(1− vj), otherwise,
(2)

with vk ∼ Beta(1, α) for k ∈ {1, . . . ,K− 1}, vK = 1, and α being the concentra-
tion parameter of the Dirichlet process. Given a batch of embeddings y1:N , we
want to estimate the parameters Φ = (v1:K−1, θ1:K) and α by maximizing

QΦ(Φ,Φ
(t−1)) = E

x1:N |y1:N ,θ
(t−1)
1:K ,α(t−1) [log p(x1:N , y1:N , v1:K |θ1:K , α)] (3)
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and

Qα(α, α
(t−1)) = E

x1:N |y1:N ,θ
(t−1)
1:K ,α(t−1)

[
log

∫
p(x1:N , y1:N , v1:K |θ1:K , α) dv1:K

]
(4)

with respect to Φ and α, respectively, where xn ∈ {1, . . . ,K} is the random
variable for the component assignment of the embedding yn.

For Gaussian components, we can obtain the update formulas

θ
(t)
k =

(
µ
(t)
k , Σ

(t)
k

)
=

(
m̄

(t)
k∑K

j=1 p̄
(t)
j

,
c̄
(t)
k∑K

j=1 p̄
(t)
j

− µ
(t)
k µ

(t)⊤

k

)
(5)

v
(t)
k =

p̄
(t)
k

p̄
(t)
k + α(t−1) − 1 +

∑K
j=k+1 p̄

(t)
j

, (6)

where p̄k, m̄k, and c̄k are moving averages of the sufficient statistics defined by

p̄
(t)
k = (1− γt)p̄

(t−1)
k + γt Ey

[
Pr(x = k|y, Φ(t−1))

]
(7)

m̄
(t)
k = (1− γt)m̄

(t−1)
k + γt Ey

[
yPr(x = k|y, Φ(t−1))

]
(8)

c̄
(t)
k = (1− γt)c̄

(t−1)
k + γt Ey

[
yy⊤ Pr(x = k|y, Φ(t−1))

]
. (9)

Finally, the update formula for the concentration parameter α is

α(t) =
N − 1∑N−1

k=1 Ψ
(
α(t−1) + 1 + C̄

(t)
k + C̄

(t)
>k

)
− Ψ

(
α(t−1) + C̄

(t)
>k

) , (10)

with C̄
(t)
k = B · p̄(t)k , C̄(t)

>k = B
∑K

j=k+1 p̄
(t)
j , and B being the batch size. Further

details on the derivation of the formulas above can be found in [19].

2.2 Anomaly Scoring

Given the DPMM fitted to the normal distribution of patch embeddings, we
can evaluate the alignment of a test sample with the modeled distribution using
several metrics. Specifically, we consider the likelihood of the most probable
component as well as the cosine similarity and Euclidean distance to the nearest
component center. As shown in Fig. 2, certain components tend to model specific
anatomical structures. Among the three metrics, cosine similarity provides the
most consistent assignment of anatomical structures across different samples,
particularly for anomalous samples. Using the full likelihood of the model in
Eq. (1) is not an option, as in our experiments the full likelihood is usually
dominated by the likelihood of only one component. Based on this observation,
we 1) choose to normalize the embeddings y for training and testing and 2) use
cosine similarity as our anomaly score function.

During fitting the DPMM, some components can vanish as their weight πk

shrinks towards zero. To suppress all components with vanishing weights, we
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Normal Samples Anomalous Samples
Image Likelihood Euclidean Cosine Image Likelihood Euclidean Cosine

Fig. 2: For two normal and two anomalous images, we visualized the index
of the closest component for each patch in terms of component likelihood
(argmaxk N (yn|µk, Σk)), Euclidean distance (argmink ||yn − µk||2), and cosine
similarity (argmaxk y

⊤
n µk/(||yn||2 · ||µk||2)). To highlight the consistency over

multiple samples, we selected samples showing similar anatomical structures for
this visualization, with and without lesions. Different brain structures of the
normal images are seemingly represented by different components: tissues at the
centerline by the orange component (white arrow), ventricles by the bright blue
component (black arrow). For the anomalous images, we can observe a similar
assignment when using cosine similarity. However, the component likelihood and
the Euclidean distance fail to assign these structures to the correct component
in several anomalous cases.

apply a threshold tπ to the component weights first, and the anomaly score
function becomes

s(yn) = max
k:πk>tπ

y⊤n µk

||yn||2||µk||2
. (11)

Since DINOv2 only creates embeddings of image patches, this yields a coarse,
patch-wise anomaly score map. To obtain pixel-wise anomaly scores, we inter-
polate the patch-wise anomaly scores to full resolution.

To create an anomaly segmentation mask, we threshold the pixel-level anomaly
score map. To stay in line with the unsupervised setting, we select the threshold
such that a predefined false positive rate on the healthy validation set is achieved
as in [8].

3 Experiments and Results

3.1 Experimental Setup

Model Architecture As backbone, we use the small architecture of DINOv2
with the official pretrained weights1, leading to a 384-dimensional embedding
space. We truncate the DPMM to 500 components and use diagonal covariance
matrices for the Gaussian components. We set the discount factor in the moving
1 https://github.com/facebookresearch/dinov2 under the Apache 2.0 License.

https://github.com/facebookresearch/dinov2
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average γt to 0.2 to accumulate the statistics over many batches and the com-
ponent weight threshold tπ to 1e−6. We train the DPMM with a batch size of
12 images, which are resized to a resolution of 448 × 448, resulting in batches
of 12 288 embedding vectors. We trained the DPMM for 40 epochs and selected
the model achieving the highest log-likelihood on the normal validation samples.

Datasets We conducted our experiments using the anomaly segmentation data-
sets from the BMAD benchmark [3], which include BraTS2021 [2] (brain MRI),
BTCV [21] and LiTs [4] (liver CT), and RESC [16] (retinal OCT). BraTS2021
comprises 8179 normal and 3119 anomalous images, the liver CT datasets have
2468 normal and 733 anomalous images, and RESC contains 5408 normal and
809 anomalous images.

Baselines We compare our work with multiple unsupervised anomaly detec-
tors, namely DRAEM [33], UTRAD [5], RD4AD [12], STFPM [30], PaDiM [11],
PatchCore [28], CFA [22], CFLOW [14] and AnomalyDINO [10]. For PatchCore,
we applied the proposed reduction to 10% of the memory bank as well as a much
stronger reduction to 1024 and to 150 prototypes, which we refer to as few-shot
setting. For AnomalyDINO, we tested the full-shot and one-shot setting, with
the one-shot setting corresponding to 1024 prototypes.

Evaluation Metrics We compare our method with state-of-the-art anomaly
detectors using the area under the receiver operator characteristic curve (AU-
ROC) and the area under the precision recall curve (AUPR) at pixel-level. We
also report the per-sample runtime and maximum memory utilization for the
anomaly detection stage, measured with a batch size of 1 and one separate thread
for data loading using an NVIDIA A6000 GPU with 48GB of VRAM. Further,
we compare the anomaly segmentation performance with AnomalyDINO using
the Dice score at 1%, 5%, and 10% false positive rate on the normal validation
images.

To test the statistical significance of our results over PatchCore with 150 pro-
totypes, we run a paired permutation test on the image-wise AUROC and AUPR
scores with 10 000 permutations for the BraTS2021 and the RESC datasets. Us-
ing image-wise scores is necessary as the anomaly score maps for PatchCore and
our method are constructed using Euclidean and cosine distance to the nearest
prototypes, respectively, and thus cannot be compared directly.

3.2 Results

We provide a quantitative comparison of our method with state-of-the-art ap-
proaches in Tab. 1. Over all datasets, only AnomalyDINO in the full-shot set-
ting manages to outperform our approach consistently. However, AnomalyDINO
comes with enormous memory requirements and with long runtimes. For BraTS
and BTCV+LiTs, the AUROC for our approach is only 2.13% and 1.83% lower
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Table 1: AUROC and AUPR scores for pixel-level anomaly detection as well
as per-sample runtime (without data loading or metric computation) and mem-
ory utilization of the anomaly detection on the test set. The methods with the
suffix "R50" use WideResNet50 [32] as the backbone instead of ResNet18 [15].
PatchCore-R50 in the standard setting is not available for the BraTS2021 dataset
as the coreset subsampling could not fit into the GPU memory. We averaged AU-
ROC and AUPR scores for AnomalyDINO in the one-shot setting over 25 runs.
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DRAEM 92.70 38.66 149 0.5 93.82 16.01 125 0.5 86.78 31.86 130 0.5
UTRAD 92.81 24.63 43 0.9 84.28 1.25 45 0.9 55.52 6.00 42 0.9
RD4AD 97.81 52.11 139 0.4 94.35 3.48 118 0.4 96.92 67.56 117 0.4
STFPM 96.64 45.45 122 0.0 94.70 3.20 106 0.0 93.85 45.07 108 0.0
STFPM-R50 97.32 52.87 133 0.2 96.14 5.10 118 0.2 94.78 52.66 111 0.2
PaDiM 85.77 8.21 145 0.2 89.77 1.66 127 0.2 90.00 31.07 124 0.2
PaDiM-R50 83.36 6.89 158 3.7 90.48 1.79 131 3.7 92.12 35.31 129 3.7
PatchCore 98.34 67.37 202 3.4 96.67 5.66 132 0.7 97.08 70.47 150 2.0
PatchCore-R50 N/A 96.63 5.99 160 1.9 97.55 72.62 218 5.0
CFA 97.27 54.15 134 0.3 97.29 7.65 125 0.3 91.65 26.52 116 0.3
CFLOW 95.18 32.63 255 1.0 97.13 11.63 223 0.9 94.79 53.21 219 0.9
AnomalyDINO 97.71 58.69 422 33.1 97.24 17.91 107 6.9 94.04 50.45 984 38.1
PatchCore-R501 95.38 55.07 149 0.2 45.70 0.32 130 0.1 93.28 61.88 132 0.1
PatchCore-R502 95.02 42.68 158 0.2 16.31 0.23 139 0.1 78.70 25.98 136 0.1

▲ 96.57 44.74 98.17 14.30 92.24 42.63
AnomalyDINO1* 94.61 31.21 24 0.2 94.60 5.98 26 0.2 89.52 36.98 49 0.4

▼ 84.97 8.72 89.45 2.93 85.10 26.51
Ours 96.21†43.43† 39 1.6 95.46 9.02 35 1.5 90.20†41.66† 58 2.0
1 few-shot with 1024 prototypes 2 few-shot with 150 prototypes
* max (▲), average, and min (▼) value over all seeds provided † statistically
significant improvement over PatchCore-R502 (permutation test with p < 1%)

than for the best-performing method, respectively. With the exception of the
one-shot AnomalyDINO on the RESC dataset, our method runs more than
1.8 times faster than all better-performing methods. This trade-off is also vi-
sualized in Fig. 3. Our method is one of the furthest towards low runtimes and
high AUROC and AUPR scores, indicating a better trade-off than state-of-the-
art methods.

Our approach ends up with roughly 120 to 150 prototypes, while the remain-
ing components vanish. Comparing with similarly sized coresets for PatchCore
or the one-shot setting for AnomalyDINO, our approach outperforms both in
almost all metrics, while still having a substantially lower runtime compared to
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Fig. 3: Visualization of the trade-off between runtime and anomaly segmentation
performance on the BraTS2021 dataset. Methods with high anomaly segmenta-
tion performance and low runtime are at the top left in each plot.

Table 2: Dice scores for anomaly segmentation for three different thresholds
selected to achieve a fixed false positive rate (FPR) on the normal validation
set. Results for the one-shot setting are averaged over 25 samples.

BraTS2021 BTCV+LiTs RESC
FPR 10% 5% 1% 10% 5% 1% 10% 5% 1%

AnomalyDINO (full-shot) 29.26 38.16 54.24 7.19 10.48 18.69 39.28 45.82 52.30
AnomalyDINO (one-shot) 31.89 37.45 32.98 6.17 8.20 10.63 36.48 40.34 33.88
Ours 31.64 41.45 45.87 6.19 8.52 14.76 38.00 43.74 43.49

PatchCore. The implementation of AnomalyDINO is more optimized for effi-
ciency than ours, for instance, they use Faiss [18] for the nearest neighbor search
and thus reach faster runtimes. Using a similar optimization, we expect our
method to reach even lower runtimes.

We report Dice scores for our approach and both settings of AnomalyDINO
in Tab. 2. Not surprisingly, AnomalyDINO in the full-shot setting yields the
highest scores for most of the thresholds. However, our approach outperforms
the one-shot AnomalyDINO in all but one case, usually by quite some margin.
Despite using only a few prototypes, our method demonstrates its effectiveness
in reducing the gap to methods with many prototypes.

Table 3: Ablation results for the anomaly score function and for the normaliza-
tion of the DINOv2 features.

Anomaly Score
Function

Feature
Normalization

BraTS2021 BTCV+LiTs RESC
AUROC AUPR AUROC AUPR AUROC AUPR

Likelihood False 92.85 23.56 94.62 5.90 85.92 29.04
Euclidean False 93.52 29.04 93.99 7.54 86.26 35.47

Cosine False 95.06 38.41 95.30 7.96 89.78 42.52
Likelihood True 95.49 33.44 95.66 9.92 89.27 33.80
Euclidean True 96.17 42.68 95.44 9.22 90.15 41.00

Cosine True 96.21 43.43 95.46 9.02 90.20 41.66
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3.3 Ablation Studies

We analyze the choice of cosine distance over Euclidean distance and the log-like-
lihood for our anomaly metric as well as the choice of normalizing the DINOv2
features. The resulting AUROC and AUPR scores are in Tab. 3. Generally, the
results using normalized features are higher than for unnormalized features. The
detection with cosine distance leads to the highest scores for most of the exper-
iments, further supporting the findings of our preliminary analysis in Sec. 2.2.

4 Conclusion

In this work, we proposed an unsupervised anomaly detection framework that
leverages the expressive power of DINOv2 embeddings and models their distri-
bution using a Dirichlet Process Mixture model (DPMM), which automatically
adjusts the number of components to the data at hand. Experimental results on
the BMAD benchmark [3] demonstrate that our method achieves competitive
performance while significantly reducing the computational cost. Currently, the
feature extraction with DINOv2 is the main bottleneck, so future research could
explore this setup with distilled models to further improve efficiency.
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