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Abstract. Survival prediction plays a crucial role in clinical decision-
making, enabling personalized treatments by integrating multi-modal
medical data, such as histopathology images, pathology reports, and ge-
nomic profiles. However, the heterogeneity across these modalities and
the high dimensionality of Whole Slide Images (WSI) make it chal-
lenging to capture survival-relevant features and model their interac-
tions. Existing methods, typically focused on single-modal WSI, fail to
leverage multimodal information, such as expert-driven pathology re-
ports, and struggle with the computational complexity of WSI. To ad-
dress these issues, we propose a novel Tri-Modal Survival Estimation
framework (TMSE), which includes three components: (1) Pathology re-
port processing pipeline, curated with expert knowledge, with both the
pipeline and the processed structured report being publicly available; (2)
Context-aware Tissue Prototype (CTP) module, which uses Mamba and
Gaussian mixture models to extract compact, survival-relevant features
from WSI, reducing redundancy while preserving histological details; (3)
Attention-Entropy Interaction (AEI) module, a attention mechanism en-
hanced with entropy-based optimization to align and fuse three modali-
ties: WSI, pathology reports, and genomic data. Extensive evaluation on
three TCGA datasets (BLCA, BRCA, LUAD) shows that our approach
achieves superior performance in survival prediction. Data and code are
available: https://github.com/RuofanZhang8/TMSE

Keywords: Multi-modal learning · Survival Prediction · Heterogeneous
Biomedical Data.
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1 Introduction

Survival prediction is vital in clinical decision-making, offering prognostic in-
sights for personalized treatment and advancing precision medicine by integrat-
ing machine learning with multi-modal medical data [23]. As precision medicine
evolves, cancer tissue pathology slides are digitized into Whole Slide Images
(WSI) with expert reports, while patient genomic profiles are increasingly col-
lected, enhancing survival analysis [1]. Integrating this multi-modal data is cru-
cial to improving the accuracy and robustness of prognostic predictions despite
complex clinical relationships [15,27].

Analyzing multi-modal information presents significant challenges due to
the substantial heterogeneity [4, 5, 16] across modalities such as histopathol-
ogy images, pathology reports, and genomic data. A common difficulties is
capturing the complex relationships between these modalities. Although each
modality contains rich information, identifying survival-relevant features from
the vast amounts of data they contain is difficult for effective integrated sur-
vival prediction [24]. Previous studies on multi-modal fusion largely focused on
pairing histopathology images with genomic data, using techniques like cross-
attention [3] or optimal transport [29]. However, these methods often face chal-
lenges when models simulate the interactions of thousands of WSI patch tokens
and other modality information to make patient-level predictions. It is difficult
for the model to extract critical interaction information from the large number
of WSI tokens, and the overwhelming amount of WSI data can easily obscure
information from other modalities, posing an extremely difficult challenge. Fur-
thermore, pathology reports, which offer expert-driven descriptive insights [14],
represent a valuable complement to image data and are readily accessible. How-
ever, earlier research often neglects this expert-driven information or lacks effi-
cient methods to integrate pathology reports with clinical knowledge, limiting
their potential utility in multi-modal analysis.

To address these challenges, we propose the Tri-Modal Survival Estimation
framework (TMSE). First, we design a pathology report processing pipeline that
integrates expert knowledge to efficiently and uniformly extract information
from pathology reports for survival prediction assistance. Second, we propose
a Context-aware Tissue Prototype (CTP) module that integrates Mamba archi-
tecture and Gaussian Mixture Model (GMM) for efficient tissue representation
learning. The GMM component compresses similar tissue patches into a compact
set of prototype representations, effectively reducing the redundant information
caused by high-resolution WSI sampling. Meanwhile, the Mamba architecture
models contextual relationships among thousands of WSI patch tokens, cap-
turing survival-relevant tumor microenvironment (TME) features that emerge
from large-scale tissue interactions. This information cannot be adequately rep-
resented by GMM’s tissue-level prototypes alone. This dual approach efficiently
condenses extensive patch-level data into concise yet comprehensive feature rep-
resentations, effectively addressing the "needle in a haystack" challenge in patho-
logical image analysis while facilitating robust multi-modal feature alignment
and fusion. Third, we propose a Attention-Entropy Interaction (AEI) module to
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facilitate interactions and fusion between tri-modal information. We decouple the
information interaction in AEI into an information interaction mechanism and an
information retention mechanism, helping the model avoid being overwhelmed
by the large volume of WSI data. This enhancing multi-modal information fu-
sion efficiency and improving the model’s capacity to extract meaningful insights
from diverse modalities. Our contributions can be summarized as follows:
1. We utilize an expert-knowledge-based prompt chain pipeline to organize ap-
proximately ten thousand TCGA pathology reports using large language model
(LLM). The refined reports will enhance survival analysis and be made publicly
available to facilitate further research.
2. We propose the CTP module, which addresses WSI redundancy through
prototype-based representation learning, enabling efficient extraction and fusion
of critical histological features.
3. We develop the AEI module, which mitigates multimodal alignment challenges
through entropy-based fusion, achieving effective integration of WSI, pathology
reports, and genomic data.
4. We validate the effectiveness of our model on three TCGA datasets: BLCA,
BRCA, and LUAD, demonstrating the superior performance of our method.

2 Methods

2.1 Overview and MultiModal Data Preprocessing

We present TMSE in Fig. 1(A), a Tri-Modal Survival Estimation framework for
survival prediction. It consists of two main modules: the first efficiently represents
histological features using the CTP (Section 2.1), and the second aligns and fuses
information across modalities with the AEI (Section 2.2). Our model innovatively
leverages information from three modalities. Below, we explain how patient-
level tri-modal feature representations are constructed from WSI, expert-driven
pathology reports, and genomic data.
WSI Given a WSI of one patient, we crop it into Np patches at 20× magnifica-
tion with a size of 256×256 by CLAM [18], denoted as {xi}Nw

i=1. Each patch image
xi is then encoded into a feature representation wi using a pre-trained pathology
foundation model PLIP [9]. The resulting representation is W = {wi}Nw

i=1.
Genomics The genomic data consists of transcriptomic profiles from bulk RNA
sequencing, tokenized into biological pathway vectors [10]. The resulting gene
expression vectors are organized as G = {gi}

Ng

i=1, where gi ∈ RNc,g represents
the expression vector for the g-th pathway, consisting of Nc,g genes.
Pathology Report Pathology reports, often encumbered by extraneous de-
tails and a lack of structure, pose challenges to unified feature encoding. To ad-
dress this, we organize these reports using LLM (DeepSeek-V3 [17]), employing a
expert-knowledge-based, chain-of-thought pipeline to extract critical information
and refine it into concise diagnostic reports. Our preprocessing pipeline consists
of two key steps in Fig. 1(B). First, guided by clinical expertise, we devise a
expert-base question prompt, which leverages seven predefined, domain-specific
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Fig. 1. (A) TMSE Overview: A tri-modal alignment pipeline featuring report prepro-
cessing, WSI prototype extraction with the CTP module, and coupled AEI modules
for information interaction. (B) Report Preprocessing Prompts: Extract report details
using expert knowledge and consolidate them into a unified report representation.

questions. This approach directs the LLM to focus on and extract multifaceted
information from the reports, constructing a patient-level knowledge database.
Second, we aggregate this patient-level knowledge database into a standardized,
unified report, mitigating the risk of overlooking essential details that might oc-
cur when models directly process raw reports. We have applied this workflow
to process all TCGA reports, openly sharing our pipeline and results to facili-
tate further research advancements. The refined report is then embedded using
BiomedBERT [8], resulting in a feature T = {ti}, ti ∈ RdT .
Dimension Matching To merge features from different modalities, we align
their token dimensions to a uniform length d. A linear projection layer adjusts
the WSI token representations W ∈ RNw×d and pathology reports T ∈ R1×d,
while self-normalizing neural networks (SNN) [13] map variable-length genomics
data via pathway-specific functions fc,g to G ∈ RNg×d.

2.2 Context-aware Tissue Prototype

In this section, we introduce a Context-aware Tissue Prototype (CTP) for ex-
tracting comprehensive WSI representations from local to global scales. The
framework employs a GMM to derive representative local histological feature
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embeddings, coupled with a Mamba block to capture survival-relevant patterns
across extensive WSI patches. We ultimately extract the prototype as the result
of combining two methods: ProtoCTP = Cat(ProtoGMM,ProtoMam).

GMM-Based Prototype Aggregation We compress Nw WSI patches into
Cw prototypes (Cw ≪ Nw), preserving patch distribution by aggregating similar
regions and emphasizing distinct tissue types using GMM [12, 21]. For a WSI,
we model patch feature wi distribution with a probabilistic framework:

p(wi; θ) =

Cw∑
c=1

πc · N (wi;µc, Σc), s.t.
Cw∑
c=1

πc = 1, (1)

where θ = {πc, µc, Σc} defines mixture probability, mean, and covariance. We
interpret these as tissue morphology descriptors—similar regions share mean
and variance, while πc reflects tissue type proportions. Prototypes are formed as
ProtoGMM = [πc, µc, Σc]. We optimize θ by initializing µc with k-means cluster
centers, setting πc = 1/Cp and Σc = I, then maximizing

∑Nw

i=1 log p(wi; θ) via
expectation maximization.

Contextual Mamba Prototype To model the TME information within tis-
sue, it is essential to capture the contextual information across a large number
of tissue blocks. For the feature sequence of WSI W ∈ RNw×d, we prepend
a class token tcls ∈ Rd to represent the entire slide patch sequence, forming
W ′ = [tcls,W ]. After normalizing, we input the concatenated sequence into the
Mamba [7] module as follows:

Y = SSM(SiLU (Conv1D (Linear (W ′)))) (2)

Finally, we extract the class token from the output sequence Y as Mamba’s
prototype, ProtoMam = Y cls, which represents the global sequence information
derived from the long feature sequence.

2.3 Attention-Entropy Interaction

In this section, we introduce the Attention-Entropy Interaction (AEI) module,
which integrates attention-based interaction for bimodal alignment and fusion
with entropy-based information retention. This takes into account both the fu-
sion and preservation of multimodal information. Since WSI contain extensive
information (from macro to micro details), we separately align report data (de-
scriptive information) and genomic profiles (micro-level information) with WSI.

Cross-Modal Attention Alignment In our approach, we replace the whole
WSI patch token used in traditional attention mechanisms with CTP proto-
types to compute interactive attention, improving efficiency and reducing com-
putational complexity. For queries, we introduce learnable matrices WQ and
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define Q =
(
QT

W ,QT
G

)T
= (ProtoCTP, G)

T
WQ, and similarly for K and V. The

interactive attention is expressed as [28]:

(
ZW

ZG

)
= σ

(
1√
d

(
QWKT

W QWKT
G

QGKT
W QGKT

G

))(
VW

VG

)
(3)

where σ(·) denotes the softmax operation. We treat ZG as the fused pathway
information features after the interaction. Using the same approach, we can
obtain the fused report information ZT .

Entropy-based Information Retention In this section, we propose using
mutual information entropy to preserve information during the cross-modal at-
tention alignment process. Specifically, we exclude WSI information when com-
puting the entropy, aiming to preserve the information from the report data
and genomic profiles. We apply matrix-based Rényi’s α-order entropy func-
tional [6,20] to estimate information-theoretic measures. For gene pathway data,
we use pre-AEI G and post-AEI ZG, selecting N sample pairs {Gm, Zm

G }Nm=1
from a mini-batch. Self-information and mutual Information are computed us-
ing the normalized eigenspectrum of a Gram matrix AG = KG/ tr (KG), where
KG(m,n) = k (Gm, Gn) and k is a Gaussian kernel.

Hα (AG) =
1

1− α
log2 (tr (A

α
G)) Hα (AG, AZG

) = Hα

(
AG ◦AZG

tr (AG ◦AZG
)

)
(4)

We set α = 1.01 to approximate Shannon entropy, and ◦ denotes the element-
wise product. Finally, the matrix-based Rényi’s α-order mutual information en-
tropy Iα (G;ZG) used for information retention, is defined as:

Iα (G;ZG) = Hα (AG) +Hα (AZG
)−Hα (AG, AZG

) (5)

For textual information, I (T ;ZT ) can be calculated in the same manner.

2.4 Training Strategy for Survival Prediction

For a patient, the final multimodal feature is derived by applying layer nor-
malization and mean pooling to the CTP prototypes, post-AEI text feature,
and post-AEI genomic feature. For survival prediction, we employ the Negative
Log-Likelihood (NLL) loss function [30], as Lsurv. The total training loss for
end-to-end model training is then calculated with weight factors α:

L = Lsurv + α1LI(G;ZG) + α2LI(T ;ZT ). (6)
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Table 1. C-Index (mean ± std) performance over three cancer datasets. The best
results are shown in boldboldbold, and the second best ones are underlined. G: use gene, W:
use WSI, and T: use pathology report.

Model Mod. BLCA BRCA LUAD Avg.↑

SNN [13] G 0.649±0.061 0.694±0.094 0.623±0.035 0.655

CLAM-MB [18] W 0.655±0.026 0.604±0.052 0.594±0.046 0.618

TransMIL [19] W 0.647±0.041 0.606±0.054 0.627±0.420 0.627

MHIM [25] W 0.620±0.031 0.572±0.085 0.593±0.054 0.595

R2T-MIL [26] W 0.651±0.036 0.605±0.063 0.611±0.026 0.622

PANTHER [21] W 0.612±0.039 0.616±0.071 0.581±0.072 0.603

MCAT [3] G+W 0.668±0.065 0.723±0.080 0.627±0.055 0.673

MOTCAT [29] G+W 0.673±0.064 0.715±0.052 0.617±0.041 0.668

CMTA [31] G+W 0.665±0.044 0.710±0.081 0.661±0.035 0.679

MMP [22] G+W 0.674±0.052 0.716±0.066 0.607±0.026 0.666

Pathomic [2] G+W+T 0.657±0.043 0.727±0.028 0.614±0.063 0.666

TMSE(Ours) G+W+T 0.687±0.0570.687±0.0570.687±0.057 0.738±0.0670.738±0.0670.738±0.067 0.682±0.0570.682±0.0570.682±0.057 0.7020.7020.702

3 Experiments

Datasets and Evaluation Metrics We apply our method to three cancer
survival datasets from the TCGA database, including Breast invasive carcinoma
(BRCA) (n= 875), Bladder Urothelial Carcinoma (BLCA) (n= 328), and Lung
Adenocarcinoma (LUAD) (n= 401). These datasets provide WSI, genomic data,
patient pathology reports [11], and overall survival (OS) times. We assess the
model performance using the concordance index (C-Index).
Implementation Details In each experiment, we perform 5-fold cross valida-
tion. All models are trained for 40 epochs with a learning rate of 10−4, using
a cosine decay scheduler, AdamW optimizer with weight decay of 10−5. We set
the batch size to 1 and the number of bins to 4 in the NLL loss setting. The
Gaussian prototype number is set to Cw = 16.

3.1 Comparison Results

We compare our model with the current state-of-the-art models in Tab. 1. All
multimodal fusion models utilize both WSI and gene data, and we maintain this
setup. Due to the scarcity of tri-modal survival prediction methods, we adapt
an existing tri-modal fusion approach Pathomic [2] for comparison.

Our TMSE model outperforms all baseline methods, achieving best perfor-
mance across three datasets, demonstrating its effectiveness and generalizability
to various cancer datasets. By integrating three modalities, TMSE significantly
outperforms unimodal models. Furthermore, compared to the contrasted tri-
modal model, our model greatly enhances the efficiency of interactions. Kaplan-
Meier analysis in Fig. 2 further confirms TMSE’s superior patient risk stratifi-
cation, enhancing its p-value over the second-best model.
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Fig. 2. Kaplan-Meier analysis for TMSE and CMTA on the three datasets.

Table 2. Ablation results of our method.

Module Mod. BLCA BRCA LUAD Avg.↑

w/o Proto. W+G+T 0.663±0.068 0.690±0.076 0.671±0.043 0.675

w/o Mamba W+G+T 0.684±0.060 0.728±0.039 0.678±0.060 0.697

w/o IR W+G+T 0.668±0.053 0.713±0.044 0.671±0.043 0.684

w/o AEI W+G+T 0.681±0.062 0.677±0.053 0.682±0.051 0.680

TMSE W 0.605±0.030 0.580±0.066 0.600±0.074 0.595

TMSE W+T 0.637±0.052 0.608±0.041 0.668±0.051 0.638

TMSE W+G 0.675±0.052 0.716±0.044 0.648±0.055 0.680

TMSE(Ours) W+G+T 0.687±0.0570.687±0.0570.687±0.057 0.738±0.0670.738±0.0670.738±0.067 0.682±0.0570.682±0.0570.682±0.057 0.7020.7020.702

3.2 Ablation Studies

Effect of Prototypes We replace prototypes in the AEI module with all patch
tokens, while retaining prototypes for the final survival prediction to preserve the
integrity of the architecture. A C-index drop across three datasets shows that
compressed prototypes boost information interaction efficiency. We drop the
Mamba module, keeping only GMM-based prototypes. The C-index decreases,
hinting at limitations in GMM-based feature extraction. Mamba-derived tokens,
capturing broader context, prove vital for the task.
Effect of Different Modules in AEI We explore the tradeoff in AEI be-
tween information retention and fusion by removing information retention (IR)
while preserving the attention mechanism, using only the fused information, or
completely removing the AEI module and relying on the original features. For
BLCA and LUAD, dropping information retention significantly lowers perfor-
mance, while using the original feature causes a smaller decline, indicating the
value of retaining multimodal information for survival prediction. Conversely,
BRCA shows an opposite pattern. Our AEI module optimally balances informa-
tion fusion and information retention, delivering the best performance overall.
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Effect of Multimodal Fusion We test our model by excluding certain modal-
ities. Using only WSI data reduces performance, while adding text and gene
profiles enhances it, showing the benefit of multi-modal integration. The high-
est performance occurs when all three modalities are combined, validating our
three-modal fusion method.

4 Conclusion

We propose TMSE, a tri-modal survival analysis method integrating WSI, ge-
nomic profiles, and pathology reports. It uses expert-driven report extraction,
a GMM-Mamba hybrid for WSI features, and entropy-combined attention to
fusion modality information. Extensive tests on three cancer datasets show that
our method outperforms other methods in OS survival prediction.
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