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Abstract. Accurate, real-time monitoring of tissue ischemia is crucial
to understand tissue health and guide surgery. Spectral imaging shows
great potential for contactless and intraoperative monitoring of tissue
oxygenation. Due to the difficulty of obtaining direct reference oxygena-
tion values, conventional methods are based on linear unmixing tech-
niques. These are prone to assumptions and these linear relations may
not always hold in practice. In this work, we present deep learning ap-
proaches for real-time tissue oxygenation estimation using Monte-Carlo
simulated spectra. We train a fully connected neural network (FCN)
and a convolutional neural network (CNN) for this task and propose a
domain-adversarial training approach to bridge the gap between simu-
lated and real clinical spectral data. Results demonstrate that these deep
learning models achieve a higher correlation with capillary lactate mea-
surements, a well-known marker of hypoxia, obtained during spectral
imaging in surgery, compared to traditional linear unmixing. Notably,
domain-adversarial training effectively reduces the domain gap, optimiz-
ing performance in real clinical settings.
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1 Data

1.1 Simulated data

Diffuse reflectance spectra are simulated in silico using Monte-Carlo simulations
of light propagation in an artificial tissue. As tissues’s oxygenation is defined
within the simulation, reflectance spectra with a ground-truth oxygenation label
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are obtained and used to train the deep learning models. This simulation frame-
work follows a similar approach as Ayala et al. [2,8]. An overview is illustrated
in Fig. 1.

Soft tissue typically consists of three distinct layers, from outermost to in-
nermost: the serosa, muscularis and submucosa. Hence, we implement a three-
dimensional 3-layered tissue model, see Fig. 1a. For each of the layers in the tissue
model, physiological tissue parameters are uniformly sampled from a prior dis-
tribution. Additionally, the absorption coefficient p, and scattering coefficient
1s are calculated based on the sampled values and used as input for the simula-
tion of the light propagation. Prior distributions and u, and ug calculation are
identical to [2]. The size of the tissue comprised 20 x 20 x D voxels, with a voxel
size of 0.01 mm. The depth D of the tissue depends on the sampled thickness
value for each layer.

Simulations were performed using a GPU-accelerated Python implementa-
tion of the MCX software [5]. A uniform planar light source was defined above
the tissue and the number of photons at launch was set to 1-10°. A total of
6.4 - 10° reflectance spectra were simulated at wavelengths 440 nm to 640 nm in
steps of 4 nm, see Fig. 1b. The diffuse reflectance obtained at the surface was
averaged resulting in a reflectance spectra r(\) of 51 wavelengths.

Labeling the oxygenation value from a multi-layered tissue is performed using
the method proposed by Ayala et al. [1]. During every simulation, the penetration
depth p(A) is calculated as the depth inside the tissue at which the intensity
of incident light at wavelength A drops to a ratio of % A weighted average
oxygenation is then calculated based on p(A) and the sampled thickness for
every layer.
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Fig.1: Overview of the approach to simulate oxygenation labeled reflectance
spectra.

The obtained reflectance spectra r(\) from the simulations are independent
of the imaging system. These are adapted to resemble measurements using a
multispectral camera (Fig. 1c):
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with 7(b) denoting the reflectance at band b of the multispectral camera, w(b)
the camera noise for band b, L(\) the relative irradiance of the light source,
T(\) the transmission profile of optical components, and s(b, \) the spectral
response curve for band b. Finally, the spectra were normalized by dividing
their area under the curve to compensate for changes in imaging distance and
angles between the camera and tissue.

1.2 Clinical data

Spectral data was acquired for 17 patients scheduled for elective laparoscopic
esophagectomy. Immediately before resecting the stomach graft, as part of the
procedure to connect it to the esophagus by means of a anastomosis, the surgeon
visually identified and marked three regions of interest (ROIs). One correspond-
ing to the chosen anastomotic site. The second being a well-perfused region
located 2-3 c¢m proximal from the pylorus. In addition, a small piece of tissue
excised from the proximal stomach acted as an ischemic control. In 11 patients,
capillary lactate was measured at every ROI using a handheld lactate analyzer
(EDGE Analyzer, Apex Biotechnology, Taiwan) to further assess hypoxia.

Video-rate MSI was performed immediately before the lactate measurements.
The XIMEA SNAPSHOT VIS (Imec, Belgium), a multispectral snapshot camera
capturing images at 16 different wavelengths in the 460 - 600 nm spectral range
was used. The camera was mounted to a standard laparoscope using a C-mount
coupler (C-mount zoom adapter, RVA Synergies, UK), and connected to a Xenon
light source (CLV-S190, Olympus, Japan). During imaging, all three ROIs were
within the camera’s field of view. The study was approved by the ethical com-
mittee of the Ghent University Hospital (B670201836427) and informed consent
was obtained from all patients. The trial is registered at Clinicaltrials.gov with
registration number NCT03587532.

A radiometric calibration method was employed [7]. In short, the raw images
underwent dark subtraction and demosaicking was performed using an algorithm
developed by Muszytiski and Luong [6]. Only in the case of linear unmixing, each
pixel spectrum was multiplied with the correction matrix supplied by the manu-
facturer. Values were further divided by the spectra of the light source, obtaining
reflectance data. The spectra were further normalized by dividing by their area
under the curve. To obtain unlabeled real spectra later used for training the
domain-adversarial models, a single frame was selected for every patient and the
stomach graft was manually segmented.
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2 Methods

2.1 Deep learning models

Four deep learning models are trained. Model architectures were kept small to
ensure real-time oxygenation estimation. First, a fully connected (FCN) and
convolutional neural network (CNN) were trained without a domain-adversarial
approach. The FCN consists of three hidden layers containing 64, 128 and 256
nodes. In the CNN architecture, 2 convolutional layers with sizes 16 and 32
are introduced, with a kernel size of 2 performing convolutions in the spectral
domain. Each layer is followed with a ReLU activation function, batch normal-
ization and a dropout rate of 20%. The output layer is a single linear layer
estimating an oxygenation value.

To construct the domain adversarial networks, the same 2 model structures
are used as before with the addition of a domain discriminator: a domain-
adversarial fully connected network (DA-FCN) and a domain-adversarial convo-
lutional network (DA-CNN). These models produce deep features in their hidden
layers acting as a generator. A linear output layer, the discriminator, is added
to the network classifying whether the produced features from the generator
originate from a simulated or real spectrum.

2.2 Experiments

In total, 6.4 - 10° labeled spectra were simulated and adapted to the used MSI
system. They were split into a training (80%) and validation (20%) set, and
stratified based on the oxygenation. Before every epoch, the training data was
augmented by simulating camera noise by means of additive Gaussian noise.
The noise was added to every band b by means of the w(b) parameter in Eq. 1:
w(b) ~ n(0,0?), where o is adjusted to obtain an SNR of 40 dB. The validation
data was similarly augmented, but only once at the start of the training. Training
of the FCN and CNN was performed using the Mean Squared Error (MSE) loss.
The learning rate was set to 1073, and scheduled to reduce by a factor of 10 if
the validation loss did not decrease for 10 epochs by as much as 1%.

In the case of DA-FCN and DA-CNN, unlabeled real spectra were added to
train both the generator and discriminator. To fully separate the training and
test set, 6 out of the 17 patients without a corresponding lactate measurement
were used for training. From these, a total of 1.2 - 10° spectra were derived
from their manually annotated stomach graft and split into a training (80%)
and validation set(20%). For testing, a total of 7328 spectra were derived from
20x20 pixel ROIs of the 11 other patients that did have a corresponding lac-
tate measurement. During training, a balanced sampler is used to ensure equal
representations of simulated and real spectra. A domain label of 0 was given
to simulated spectra and 1 to real spectra. A combined loss function was used
incorporating the MSE for the regression task (L,) and Binary Cross Entropy
(BCE) loss as adversarial loss for the domain classification task (L, and Lp):
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L=Lg+Lp=(Lr+AaLa)+Lp (2)

with Lg the loss used for training the generator, L the loss for training the
discriminator, and A, a factor to control the contribution of the adversarial loss
set to 0.25. Before computing BCE losses, the output was transformed using a
sigmoid transformation. The learning rate for the generator was set to 10~3 and
that of the discriminator was to 1079, with the same schedulers as before. Every
model was trained with an Adam optimizer with a weight decay of 1079, a batch
size of 512, and for 100 epochs.

2.3 Clinical validation

Retrospective clinical validation is performed on the test set containing 11 pa-
tients with a corresponding capillary lactate measurement. The oxygenation
quantification methods are evaluated by analyzing the relationship between oxy-
genation and capillary lactate, a clinical marker of hypoxia. The relationship
between lactate and oxygenation is commonly described using an exponential
function as follows [3]:

Capillary lactate = A - 02 (3)

where Oy corresponds to the oxygenation value and A and B are unknown fitting
parameters of the exponential function.

The parameters A and B are determined using an ordinary least squares fit
between the capillary lactate values and corresponding oxygenation estimates
(averaged over a region of 20x20 pixels around the lactate sampling point).
The mean absolute error (MAE) and R? value of the fit, and the correlation
coefficient, are selected to assess the performance of the different oxygenation
quantification methods. The higher the correlation with lactate and the better
the fit with the exponential function, the better the relation between predicted
oxygenation and the hypoxia marker capillary lactate. In addition, these values
are compared to those obtained by predicting oxygenation using a linear mixing
approach outlined in previous work [4].

3 Results

The performance of different models for oxygenation quantification is summa-
rized in Table 1, containing the training and validation regression losses, along
with the evaluation metrics from the clinical validation. In general, the deep
learning approach shows an improved correlation with lactate measurements
compared to the linear unmixing technique. Moreover, adversarial training leads
to the highest correlation resulting in clinically improved oxygenation estima-
tions. The best performing model on the clinical test set is the DA-FCN. Fig.
2 shows the exponential fit of the capillary lactate with the oxygenation predic-
tions of this model compared to linear unmixing. Fig. 3 shows oxygenation maps
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of the stomach graft from a single multispectral image from the clinical test data.
All models successfully estimate a high oxygenation for the well-perfused tissue
and critically low oxygenation for the ischemic tissue. Furthermore, the anas-
tomosis site seems to lie at a borderline, as a transition into lower oxygenated
tissue can be seen. The deep learning models seem to estimate less extreme, and
more realistic, values compared to linear unmixing.
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Fig.2: The exponential fit between the capillary lactate measurements and the
predicted oxygenation of the best model (a) and linear unmixing (b).
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Fig.3: (a) shows a synthetic RGB image of a patient included in the clinical test
set, along with the selected ROIs of the well-perfused, anastomosis and ischemic
tissue, (b) Oxygenation maps produced by linear unmixing and machine learning
methods. The scale ranges from 0% (dark purple) to 100% (bright yellow).
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Train Validation MAE R? Correlation  Inference time
loss (-107%)  loss (-107%) [mmol/L] [a.u.| [a.u] [ms]
FCN 6.47 9.59 10.81 £10.73 0.74 -0.86 16.64
CNN 8.80 9.86 13.33+11.98  0.71 -0.84 25.28
DA-FCN 8.04 11.78 9.83 £ 10.05 0.76 -0.87 16.80
DA-CNN 11.04 12.06 12.26 £+ 10.54 0.74 -0.86 25.88
Linear unmixing 15.32 £ 15.94 0.46 -0.68 94.68

Table 1: Model training and validation regression losses, and their performance
on the clinical test data with corresponding lactate measurements. In addition,
the average inference times over 1000 iterations on a multispectral image are

shown using an NVIDIA GeForce RTX 4060 Laptop GPU.

4 Discussion

Deep learning models improve oxygenation estimation compared to traditional
linear unmixing, showing a stronger correlation with the hypoxia marker cap-
illary lactate. Despite higher training loss, domain-adversarial training further
enhances performance by reducing the domain gap between simulated and real
data. This occurs because the generator learns deep features optimized for oxy-
genation estimation while maintaining domain invariance through adversarial
training. As a result, these models demonstrate greater robustness, leading to
improved performance on the clinical test set.

Both deep learning and linear unmixing detect large oxygenation differences,
with linear unmixing showing more extreme values, particularly between well-
perfused and ischemic tissue. However, their estimates diverge in regions with
subtle differences, such as the anastomosis. As shown in Fig. 2b, linear unmixing
tends to underestimate oxygenation in the anastomosis and overestimate it in
ischemic tissue, leading to outliers in the fit. Deep learning mitigates these errors,
resulting in a more accurate correlation.

Additionally, deep learning models achieve oxygenation mapping at 50-62
frames per second on a low-end laptop GPU, which is 56 times faster than
linear unmixing. This makes them a promising tool for intraoperative guidance
based on real-time oxygenation estimation.

As the study is limited by the number of patients and tissue types included,
future work will enhance statistical significance and robustness by addressing
this. Additionally, we are exploring the transformation of 1D simulated spectra
into 2D data to incorporate spatial information.

5 Conclusion

Deep learning methods, particularly domain-adversarial networks, improve oxy-
genation estimation compared to traditional linear unmixing. Our results demon-
strate the potential of deep learning to translate spectral imaging into a clinically
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viable tool for real-time oxygenation assessment, showing strong correlations
with a hypoxia marker.
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