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Abstract. Mammography screening is an essential tool for early detec-
tion of breast cancer. The speed and accuracy of mammography inter-
pretation has the potential to be improved with deep learning methods.
However, the development of a foundation visual language model (VLM)
is hindered by limited data and domain differences between natural and
medical images. Existing mammography VLMs, adapted from natural
images, often ignore domain-specific characteristics, such as multi-view
relationships in mammography. Unlike radiologists who analyze both
views together to process ipsilateral correspondence, current methods
treat them as independent images or do not properly model the multi-view
correspondence learning, losing critical geometric context and resulting in
suboptimal prediction. We propose GLAM: Global and Local Alignment
for Multi-view mammography for VLM pretraining using geometry guid-
ance. By leveraging the prior knowledge about the multi-view imaging
process of mammograms, our model learns local cross-view alignments
and fine-grained local features through joint global and local, visual-visual,
and visual-language contrastive learning. Pretrained on EMBED [14],
one of the largest open mammography datasets, our model outperforms
baselines across multiple datasets under different settings. *

Keywords: Deep Learning - Visual-Language Pre-training - Contrastive
Learning - Multi-view Alignment - Mammography

1 Introduction

Mammography screening is an effective tool for early detection of breast cancer,
one of the most deadly cancers [26,28]. Unlike many natural or medical images
that offer a single view, standard mammography protocol produces two 2D images
of the same 3D breast from different angles — craniocaudal (CC) and mediolateral
oblique (MLO) (Fig. 1(a)). This dual-view nature, known as ipsilateral correspon-
dence, requires special consideration in clinical interpretation. Radiologists rely

3 The code is available at https://github.com/XYPB/GLAM.
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Fig. 1. The Importance of Multi-view. (a) Due to the imaging process, an ROI
(red dot) appears in the same anterior-posterior (AP) slice in both mammography views.
(b) Two ROISs located at different positions in the same AP slice result in the same CC
view image but different MLO view images, demonstrating the single-view ambiguity.

on both views to accurately locate regions of interest (ROIs), such as tumors or
calcifications, and to mitigate ambiguities caused by projection angles [13,18,15].
For instance, as in Fig. 1(b), an ROI (red dot) might lie anywhere along the
vertical blue “tube”, resulting in the same CC view image, while their MLO
appearance will be different due to the MLO imaging angle. Thus, ignoring either
view can lead to diagnostic errors, especially in data-driven deep-learning models
that lack prior knowledge of the imaging process. In addition to considering prior
imaging knowledge, inclusion of multi-modal information through contrastive
language-image pre-training (CLIP) [24] has shown promise in enhancing medical
image analysis. However, most prior CLIP models in the medical domain focus on
other modalities like chest X-ray [29,35,30,31]. Meanwhile, mammography-specific
models only conduct global alignment, neglecting fine-grained multi-view local
alignment [5,12,10]. Besides, existing image-only multi-view mammography meth-
ods primarily use global feature fusion [1,6,32,27,16,20,7], which compromises
local detail. Others consider local multi-view alignment, e.g., using graph neural
networks to learn the cross-view attention [18,17] or feature cosine similarity to
model the multi-view relationship [13]; however, they lack the geometry knowledge
needed for correct alignment that follows the actual 3D breast structure.

In this paper, we propose Global and Local Alignment for the Multi-view
mammography CLIP foundation model with geometry guidance, i.e., GLAM.
Pre-trained on ~ 200k screening mammograms, our model is among the largest
in this domain. Inspired by the mammography imaging process and geometry-
guided patch matching [11,25], we propose a self-supervised, cross-view local
patch alignment method that respects the CC and MLO projection relationship.
Instead of patch-to-patch alignment that improperly treats the breast as a rigid
body [18,33,13,19], we adopt patch-to-slice alignment along the anterior-posterior
(AP) axis (Fig. 1(b)). We use cross-attention to include all relevant tissues along
the AP slice while accounting for breast deformation in the CC-mediolateral (ML)
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Fig.2. GLAM Model. (a) Our method conducts global multi-view CLIP and aligns
global visual features to text features from the report. (b) The patch level feature from
each view is used to conduct geometry-guided local alignment, where patches from the
same AP slice are used as positive matches in a cross-attention mechanism.

plane during imaging. We evaluate our method on three datasets with varied
distributions [14,3,23], outperforming all baselines in multiple downstream tasks.

2 Methods

Given a multi-modal and multi-view mammography dataset D = {(x¢¢, z"° y;)},
where i = 1,..., N, (z5¢, 2™!°) is the multi-view image pair and y; is the radiology
report. Our goal is to learn a robust mammography encoder fi, with both global
multi-modal knowledge and local multi-view correspondence awareness (Fig. 2).
Pre-processing. Since the MLO view imaging is not parallel to the CC-ML
plane (Fig. 1), the mammogram in the MLO view is inclined and contains a
pectoral region. We remove the pectoral region using the Hough detector and
rotate the image so that the segment between the chest and nipple is parallel
to the AP axis, which better aligns the CC and MLO view along the AP
axis. However, it is still possible that the two views are misaligned in the AP
axis due to extreme cases such as a large pectoral region. We apply a random
affine transformation to provide a soft alignment so that the model is more
robust to local misalignment. Lastly, we synthesize the radiology report from
tabular data following [10], which provides informative structured mammography
reports, including imaging information, patient data, and findings. Random text
augmentation following [34] is used to generate more diverse reports.

Contrastive Loss. We first define the contrastive loss £ between two batched
embeddings z and Z of size B in Eq. (1), following InfoNCE [4] loss:

£z 7) = -+ exp (zi, Zi)/T) ’ 1
Z > exp({zi, Z)/7) =
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where (-, ) is the cosine similarity and 7 is the learnable temperature constant.
All our learning objectives follow this basic contrastive form.

2.1 Global Multi-view Visual Language Pre-training

We first conduct multi-view visual language pre-training (VLP) at a global level.
We extract the visual feature (v°¢, v™°) and textual feature ¢ with corresponding
modality encoder fy and fr. We use the embedding of [CLS] token as the global
feature and optimize the multi-view contrastive loss £(v°¢,v™). Since the multi-
view mammograms are different projections of the same breast, representing
different views of the same information, it is natural to optimize the image-to-text
contrastive loss symmetrically. Thus, our final global optimization objective is:

1
Eglobal = ‘C’(Uccv ,Umlo) + 5 [‘C(UCC7 t) + ‘C(t7 UCC) + ‘C(Umlo7 t) + E(t, vmlo)] ) (2)

which optimizes both global multi-view contrastive loss and symmetric image-
to-text losses. The textual supervision signal can help the model to learn an
embedding space with high-level semantic information.

2.2 Geometry-Guided Local Alignment

Spatial Attention Aggregation. We use the patch features from fy to conduct
local alignment. Instead of using raw patch tokens that have a small receptive
field, we aggregate the patch features using a spatial attention pooling layer to
form M super-patches with a larger receptive field. These super-patches contain
higher-level semantic information, which will be used for local alignment.

AP Slice Sampling and Local Alignment. We use the known geometry of
mammography imaging as guidance to align the local patches. Namely, the image
slices from both views in the same AP position represent the same tissue in the 3D
breast, and each patch in the CC/MLO view should be aligned with a complete
slice in the other view. Thus, we conduct patch-to-slice alignment along the AP

axis. For a query patch ¢ in it" row and ;" column, its corresponding AP

mlo

slice in the MLO view is s7° = {¢/le, ... qm?j}. A multi-head cross-attention

g T UHlgo

module is employed to model the alignment process between ¢f*; and smo

7 i

P55 = CrossAttn. (¢{¢, 5;’”0, s;»”lo) = softmax ((¢{, 5§”ZO>/\/&) .5?107 (3)
where d is the embedding dimension. We omit the linear projector for simplicity.
The output p{ can be viewed as the weighted sum over the slice s;-"l(’ based on
its correspondence to the query patch. So, pi; will naturally be the cross-view
positive for query patch ¢;5. Similar computation is used for the MLO patches.
Negative Samples. To enhance the local positional awareness within the
mammograms, we use all other patches from different positions as the negatives,
i€, Sposition = 1P nl(m,n) # (i,§)}, which provides M — 1 negative samples.
However, using only Sposition as negatives may result in a sub-optimal performance
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Table 1. BI-RADS Prediction Results on EMBED. Performance (in %) for
each method under zero-shot, linear probing with varying training data size, and full
fine-tune settings. * denotes use of official pre-trained weights. Best and second-best
results are in bold and underlined, respectively. Our method is shaded in gray.

Zero-shot Linear Probing Full Fine-tune

100% 1% 10% 100% 100%
bACC AUC bACC AUC bACC AUC bACC AUC bACC AUC

Methods

Vision only

Random-ViT [9] - - 35.19 52.56 36.36 52.79 36.05 52.76 35.73 52.42

DiNOv2-ViT [22] - - 41.48 57.62 45.97 61.64 45.45 61.53 43.46 60.33
CLIP pre-trained

CLIP [24] 37.17 55.90 43.35 59.57 47.89 64.46 47.05 63.50 45.77 61.79

SLIP [21] 44.24 60.67 43.43 60.39 48.82 64.67 46.66 63.35 37.81 54.60

ConVIRT [35] 43.02 61.31 47.45 63.16 47.91 63.78 47.73 63.40 49.41 65.41

MGCA [29] 45.48 61.92 47.81 62.76 48.30 63.44 48.82 64.83 50.37 65.70

Mammo-CLIP-B2* [12] 36.93 56.20 42.05 60.67 42.90 61.80 42.53 62.18 43.03 60.75
Mammo-CLIP-B5* [12] 36.67 57.09 38.68 59.93 38.15 61.21 38.29 61.25 38.58 61.46
MaMA [10] 44.61 61.63 46.63 63.65 48.90 64.81 47.96 63.69 49.95 66.06

GLAM (Ours) 47.24  64.86  48.57 64.71 49.17 65.29 50.07 66.59 51.81 67.34

as the model can learn to short-cut via using positional encoding. To address this,
we use additional negative patches from the same position of different patients
across the batch, i.e., Spoiion = {Di51P55 # piS} and p* comes from other
patients in the batch. These patches are natural negative samples for the query
patch since they are from different patients; this forces the model to focus more
on patch features rather than positional encoding. The final negative sample set
is 8% = Sposition Y Spatient> Providing M + B — 2 negative samples. The negative
set for the MLO view query patches is built similarly.

Final Losses. We optimize the following local alignment loss symmetrically:

1 T eXp(<qiy,ja piu,j>/7—)
Liocal = 7@ Z Z 10g Z ox " ” . (4)
i.j=1ve{ce,mio} presw xP(al P7)/7)
Lioear forces the model to align each super-patch with its corresponding AP slice
from the other view and ensures the model learns both relative positional rela-
tionships and semantic correspondence across both views. The final optimization
goal is the sum of global and local loss: Lfinai = Lgiobal + Liocai-

3 Experiments

3.1 Experimental Settings

Datasets. We pre-train our model on the EMBED [14] dataset with over
257k screening mammograms with tabular annotated data. We create train-
ing/validation/test sets with 70%/10%/20% data, respectively. We evaluate on
this dataset for screening BI-RADS (3 classes) and density (4 classes) prediction.
We also evaluate on the VinDr [23] dataset with 20k images for BI-RADS (5
classes) and density (4 classes) prediction using the given data splits. This dataset
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Table 2. Density Prediction Results on EMBED. Performance (in %) for each
method under zero-shot, linear-probing with varying training data size, and full fine-tune
settings. * denotes use of official pre-trained weights. Best and second-best results are
in bold and underlined, respectively. Our method is shaded in gray.

Zero-shot Linear Probing Full Fine-tune

100% 1% 10% 100% 100%
bACC AUC bACC AUC bACC AUC bACC AUC bACC AUC

Methods

Vision only

Random-ViT [9] - - 38.99 68.99 41.35 68.91 41.48 69.03 64.55 86.44
DiNOv2-ViT [22] - - 65.62 87.06 67.54 87.39 67.54 87.45 77.47 93.40
CLIP pre-trained
CLIP [24] 59.69 88.73 T4.77 93.32 76.15 91.83 76.92 92.91 78.32 93.91
SLIP [21] 7806 9278 7547 9319  77.22 9290  77.99 9375 7881  93.89
ConVIRT [35] 61.48 72.54 73.64 92.77 74.20 92.16 75.27 92.70 78.31 93.85
MGCA [29] 62.45 71.29 72.34 91.48 72.89 91.92 73.56 91.98 78.37 93.66
Mammo-CLIP-B2* [12] 53.50 80.50 70.02 88.91 68.98 88.59 69.22 88.81 76.01 92.47
Mammo-CLIP-B5* [12] 46.07 71.89 69.60 89.47 70.23 89.98 69.46 89.96 69.90 90.05
MaMA [10] 75.18 91.81 74.88 92.79 76.74 93.15 73.67 91.69 77.61 92.66
GLAM (Ours) 79.06 93.76 77.87 93.65 78.76 94.01 79.61 94.03 80.32 94.05

(from Vietnam) has a different distribution than our pre-training data (from
USA). We also evaluate on the RSNA-Mammo [3]| dataset for binary cancer
prediction. From the provided dataset of 54k images, we split 15% as the test set.
Tasks. We focus on three classification settings for individual mammograms:
zero-shot on in-domain data, linear-probing, and full fine-tune. We further vary
the size of training data in linear probing to evaluate the data efficiency.
Implementations. We initialize our encoders using BioClinical-BERT [2] and
DiNOv2 [22] ViT-B [9]. We use a batch size of 144, learning rate of 4 x 107, and
weight decay of 0.2 to pre-train our model using SGD and cosine learning rate
scheduler for 40k steps. For downstream linear probing and fine-tuning, we set
batch size to 96, learning rate to 5 x 107%, and weight decay to 0.001 and train
for 8k steps using SGD. We train with balanced sampling. The same setting is
applied to all baselines. All images are resized to 518 x 518 as input.
Baselines and Metrics. We compare with vision-only transformers with or
without ImageNet [8] pre-training; CLIP [24] and SLIP [21] as natural image
domain baselines; ConVIRT [35] and MGCA [29] as medical CLIP baselines from
different imaging domains; and Mammo-CLIP [12] and MaMA [10] as in-domain
baselines. All baselines except Mammo-CLIP are pre-trained on EMBED [14],
just like our model. We use the official pre-trained weights for Mammo-CLIP to
show the influence of different pre-training data. We report balanced accuracy
(bACC) and AUC as our metrics since the distribution of mammography data is
extremely imbalanced; simple accuracy may be biased toward majority classes.

3.2 Results

In Domain Analysis. We first evaluate on the in-domain EMBED test set for
BI-RADS and density prediction (Tab. 1 and Tab. 2). Our model outperforms
all the baselines consistently in all scenarios, surpassing the best baselines by
2.3% in AUC on average. Even with only 1% of training data, our pre-trained
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Table 3. Results on VinDr and RSNA-Mammo. Performance (in %) for each
method on prediction tasks on VinDr and RSNA-Mammo datasets under linear-probing
and full fine-tune settings. * denotes use of official pre-trained weights. Best and second-
best results are in bold and underlined, respectively. Our method is shaded in gray.

VinDr - BI-RADS VinDr - Density RSNA - Cancer

Linear Probing  Full Fine-tune Linear Probing  Full Fine-tune  Linear Probing Full Fine-tune
bACC AUC bACC AUC bACC AUC bACC AUC bACC AUC bACC AUC

Methods

Vision only

Random-ViT [9] 27.28 5650 2658  59.62  20.69  56.95  34.25 3746 5475  57.06 5418 5831
DIiNOV2-ViT [22] 3547 6351 37.99 6436 59.68  86.38  69.49 9296 5294 6101 5225  66.57
CLIP pre-trained
CLIP [24] 4126 6892 4111 7236 70.85  93.07 7238 9252 6579 7193 6369  67.94
SLIP [21] 4003 7018 41.06  74.23 7198 9279 6637 8580  60.05 6578 5565  6l.14
ConVIRT [35] 39.11 7164  39.95 7218  63.63  TLOl  TLOL  90.05 6274 6880 5359  66.03
MGCA [29] 38.85 7272 40.85 7327  TL82  89.63 7694  90.51 6464  69.94 5469  68.46
Mammo-CLIP-B2* [12] ~ 34.68 6476  36.23  65.92  64.09  87.90 6426  87.91 5281 6152  53.55  61.32
Mammo-CLIP-B5* [12] ~ 39.68  67.58  42.78  71.83  70.70  87.64  78.56 9328  60.72  66.02  64.50  72.96
MaMA [10] 4135 6836 35.94  6L78 7349 9277  65.63 9264 6318  69.32  57.31  62.28
GLAM (Ours) 41.41 73.81 41.87 74.82 74.58 93.60 78.27 93.94 67.45 73.14 68.77 75.04

Table 4. Multi-view Prediction Results. Zero-shot performance (in %) of BI-RADS
and density prediction under single-view and multi-view settings. * denotes use of
official pre-trained weights. Best results are in bold. Our method is shaded in gray.

EMBED - BI-RADS EMBED - Density
Methods Single-view Multi-view Single-view Multi-view
bACC AUC bACC AUC bACC AUC bACC AUC
CLIP [24] 42.35 61.79 44.47 63.56 57.22 87.40 57.65 88.08
MGCA [29] 44.72 62.17 46.17 63.23 68.49 89.87 71.23 91.30

Mammo-CLIP-B2* [12] 36.80 56.70 36.36 56.98 53.29 80.24 54.65 81.04
Mammo-CLIP-B5* [12] 38.27 58.35 38.30 58.64 49.63 72.63 50.20 73.42

GLAM (Ours) 46.05 63.28 48.40 66.02 79.02 93.63 79.42 94.08

model can still outperform almost all baselines trained with 100% of data.
Vision-only methods generally underperform models with VLP. We note that
Mammo-CLIP [12], pre-trained on ~10x less data, is 8% lower on average in
bACC, showing a worse generalization capability and highlighting the necessity
of scaling the training data. Meanwhile, other baselines [10,29,21] that have only
global multi-view alignment failed to beat our model since they lack fine-grained
multi-view awareness, resulting in suboptimal embedding space.

Out of Domain Analysis. We further evaluate performance on the out-of-
domain datasets VinDr and RSNA-Mammo (Tab. 3) to illustrate the generaliza-
tion capability of each model. Our model performs the best in 10 out of 12 metrics,
suggesting good generalization on unseen data. We note that the gap between
our method and other baselines is smaller in full fine-tune settings compared
with linear probing. This is mainly because these out-of-domain datasets have a
smaller training set, which makes it easier for the model to converge.
Multi-view Analysis. We evaluate the capability of modeling multi-view corre-
spondence under zero-shot settings, which focus on pre-trained embedding quality
(Tab. 4). We sub-sampled a test set from EMBED with 7,676 paired multi-view
mammograms and evaluated under single- and multi-view prediction, where the
multi-view prediction is obtained by averaging the single-view results. Our model
improves by ~2.5% in BI-RADS prediction after switching to multi-view settings,
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Table 5. Ablation Results. Performance (in %) of BI-RADS prediction on EMBED
for each ablated model. GLA: Geometry-guided Local Alignment; SPN: Same Position
Negatives; SAA: Spatial Attention Aggregation. Best results are in bold. Our method
is shaded in gray.

#Local Regions Zero-shot Linear Probing  Full Fine-tune
M=16 M=8 M=324 bACC AUC bACC AUC  bACC AUC
4512 6282 49.36 6533 3781  54.60

GLA SPN SAA AP Sampling

v v v v 45.55 62.23 47.48 63.75 36.34 53.85
v v v v 44.24 60.67 46.66 63.35 37.68 53.99
' ' v v 44.98 62.56 49.17 65.24 48.45 64.45
v v v v v 43.75 60.81 46.94 64.03 46.80 63.51
v v v v v 45.99 62.72 48.55 64.76 47.58 63.07
v v v v v 47.24 64.86 50.07 66.59 51.81 67.34
Query Patch Best Match Best Match Query Patch Best Match

Query Patch

CC > MLO

MLO - CC

Case #1 Case #2 Case #3

Fig. 3. Cross View Patch-to-Slice Attention Visualization For each pair of
mammograms, the white bounding boxes indicate the ROIs, e.g., tumor; the blue box
is the query patch; and the red box is the patch with the highest attention. Patches in
the MLO view are inclined due to AP alignment during pre-processing.

while the baselines have less to no improvement. Since the density is similar in
both views, there is less improvement. This indicates that our method can model
the multi-view geometry and extract complementary features for each view.
Ablation Study. Model ablation results are in Tab. 5. First, removing the
geometry-guided local alignment learning greatly harms the model’s performance,
especially its robustness under full fine-tuning. Same-position negatives provide
~2% improvement in zero-shot and linear probing and ensure stable behavior in
full fine-tuning. Replacing the spatial attention aggregation with average pooling
also results in sub-optimal performance. Lastly, we evaluate the necessity of
following the geometry guidance in local correspondence learning by computing
the attention across all patches in the view. This lowers performance since the
geometry constraint is broken. We also test different numbers of super-patches
M, where patch size will influence the performance as discussed in Sec. 2.2.
Qualitative Visualization. We visualize the cross-view patch-to-slice attention
weights in Fig. 3. We pick random patches within annotated ROIs from the
EMBED test set and visualize their attention scores in the corresponding AP
slice in the other view. Our model can accurately locate the ROI in the other
view and, therefore, gain multi-view awareness during pre-training.
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4 Discussion and Conclusion

We proposed one of the largest screening mammography foundation CLIP models
to date, i.e., GLAM, with a novel geometry-guided local alignment module to
enable the fine-grained cross-view awareness of the model. The proposed method
achieved state-of-the-art performance in three different datasets compared with
existing VLP models. While we mainly focus on evaluating the quality of the
pre-trained embedding space, we also plan to fuse our robust backbone with multi-
view fusion methods to further improve the performance and clinical applicability.
Future plans include introducing dense multi-modal contrastive learning and
extending multi-view alignment to both sides of the breast.
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