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Abstract. Owing to its superior soft tissue contrast, Magnetic Res-
onance Imaging (MRI) has become a cornerstone modality in clinical
practice. This prominence has driven extensive research on MRI-based
segmentation, supported by the proliferation of publicly available bench-
mark datasets. Despite employing multi-expert consensus protocols to
ensure annotation quality in public datasets, the inherent label noise,
particularly prevalent at lesion boundary regions remains unavoidable.
To address this fundamental challenge, we introduce a novel machine
learning paradigm that reframes dataset annotations as probabilistic
weak supervision rather than deterministic gold standards. We proposed
AffinityUMamba, a novel dual-branch Unet-like framework that syner-
gistically integrates convolutional operations with state space models,
leveraging local feature coherence and global contextual agreement. And
a Local Affinity-guided Label Refinement (LALR) module to identify
potential noisy labels in the training data and produce refined pseudo la-
bels. A unified uncertainty constraint paradigm combining margin-based
logit smoothing with local affinity refinement, enabling simultaneous op-
timization of segmentation accuracy and confidence calibration. Training
is stabilized through a composite objective combining topological preser-
vation constraints with margin-aware uncertainty penalization, enabling
joint optimization of structural coherence and detail fidelity. We compre-
hensively evaluated the proposed method on 12 public datasets spanning
multiple modalities: 10 MRI, 1 Ultrasound, and 1 CT. The results of our
experiments demonstrate an improved segmentation performance and
reduced prediction uncertainty.
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1 Introduction

Medical image analysis has evolved from rule-based workflows to deep learning
paradigms, driven by architectures like nnU-Net [I0]. While early research em-
phasized texture classification [5] and radiomics [I4], contemporary efforts focus
on lesion segmentation where precision impacts clinical decisions [24]. Magnetic
Resonance Imaging (MRI) dominates soft tissue analysis due to unparalleled con-
trast resolution for neurological [6], cardiac [3], and abdominal structures [25].
However, its sensitivity to tissue heterogeneity introduces critical challenges: am-
biguous lesion boundaries and intensity non-uniformities propagate annotation
inconsistencies, even in multi-expert consensus protocols [12].

From our perspective, the public datasets utilize voter/averaging manner
to obtain a sub-optimal gold standard, while conventional supervised learning
frameworks treat annotations as deterministic gold standards, ignoring the in-
herent uncertainty introduced in medical image manual labeling. This approach
propagates toxic training errors, particularly at boundary regions where the
highest inter-observer variability is commonly discovered. Gal et al. [13] defined
the aleatoric and epistemic uncertainty that were introduced in the common
pipeline of deep learning segmentation models. Many researchers focus on the
model architecture and training schemes to reduce epistemic (model) uncer-
tainty, but very limited work pays attention to aleatoric (data) uncertainty in
medical image segmentation.

Our philosophy here is to acknowledge the gaze annotation effort from expe-
rienced oncologists/doctors at the homogeneous interior of the region of interest
(ROI), while delivering discriminative knowledge through end-to-end weakly su-
pervised training at inhomogeneous boundary regions. Affinity has been proven
beneficial for improving segmentation in weakly supervised semantic segmenta-
tion [I], which refers to the spatial and semantic relationships between neigh-
boring pixels that share similar characteristics in medical images. A multi-task
framework that uses auxiliary tasks and cross-task affinity learning to enhance
weakly-supervised semantic segmentation is proposed using only image-level
ground-truth labels [28]. Another end-to-end weakly-supervised semantic seg-
mentation method based on Transformers, leverages attention mechanisms to
learn affinity and refine pseudo labels for improved segmentation accuracy [23].
State Space Sequence Models (SSMs) Mamba [7], provide an effective alterna-
tive by modeling long-range dependencies and complex relationships in sequen-
tial data. When combined with CNNs, SSMs are capable of retaining local de-
tails and boundary features while simultaneously capturing global information,
which proves advantageous in addressing complex boundaries and potential label
noise [15].

To address these challenges, we propose a paradigm shift from deterministic
annotation to probabilistic weak supervision, weakening pixel-level supervision
from ground truth labels at boundary regions. The main contributions of this
work are threefold: (1) We proposed AffinityUMamba, a novel dual-branch Unet-
like framework that synergistically integrates convolutional operations with state
space models, leveraging local feature coherence and global contextual agree-
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ment; (2) We proposed the Local Affinity-guided Label Refinement (LALR)
module to identify potential noisy label in the training data and produce re-
fined pseudo labels; (3) A unified uncertainty constraint paradigm combining
margin-based logit smoothing with local affinity refinement, enabling simultane-
ous optimization of segmentation accuracy and confidence calibration.

2 Method
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Fig. 1. Illustration of our AffinityUMamba framework.

Our framework integrates collaborative modules for probabilistic weak su-
pervision, as shown in Fig. Let z € RIXWXD he the input image, and
y € REXWXD the corresponding ground truth or predicted category map. The
feature map is p € REXHXWXD "where C is the number of classes, and H, W,
and D are the height, width, and depth of the image, respectively. Other vari-
ables include the local affinity map m € R2™*HXWXD ‘where k = 3 denotes the
size of the local 3 x 3 x 3 neighborhood, and the neighborhood N(k) refers to
the region at position 7. Additionally, the index j refers to a voxel within N'(k),
affinity scores a € RE*W XD and the local cosine similarity ¢ € R27<HxWxD T,
ensure numerical stability in the computations, a small value € is added during
division operations.

2.1 Implicit Affinity Enhancement (IAE)

Affinity Mamba (AM) module as shown in Fig. [I{c). The IAE module enhances
the feature discriminability of the AM branch by leveraging pixel affinity re-
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lationships from the CNN branch, aligning CNN’s local semantics with AM’s
global semantics through adaptive neighborhood interactions.

P = Z I pCNN—‘ Z pCNN Py + Pam (1)
JENi(k JEN’

where I is the indicator function, returning 1 if the condition is true and 0
otherwise. The mechanism encodes semantic relationships among neighboring
pixels by comparing each pixel’s value to the neighborhood’s average, enhanc-
ing the corresponding features in AM based on these implicit affinities. This
dual-branch Unet co-regularization framework improves boundary delineation
by ensuring only statistically significant correlations influence the update, en-
suring reliable tissue differentiation despite intensity inhomogeneity.

2.2 Pixel Neighborhood Enhancement (PNE)

We assume that image signals remain relatively reliable despite noisy annota-
tions, containing essential tissue boundary information. This module enhances
local continuity in CNN decoder output features by directly leveraging multi-
scale intensity relationships from the input image, addressing ground truth inac-
curacies caused by inter-observer variability. By constructing adaptive Gaussian
kernels at different scales, it explicitly captures pixel correlations based on raw
intensity patterns, complementing CNN’s inherent local modeling strengths. The
computation involves:

i i e
29 = exp (_|x“ x| > R S E & _
e e (2)
: 1/VEk :
enh d ;
penN = Z VK Z & ijCNN + Penn
ke{3,5,7} Zk’ /Vk JENi(K)

It is expected to maintain structural coherence while improving incomplete
boundaries which may be caused by partial volume effects.

2.3 Local Affinity-guided Label Refinement (LALR)

The LALR module derives the noise label suggestion from both CNN and AM
decoders, using affinity-guided annotation inconsistencies where local feature
coherence and global contextual agreement are combined.

We quantify the intrinsic affinity credibility between neighboring features
through local cosine similarity, which evaluates the semantic consistency of the
feature. This is formulated as:

. p 4 . pi
Fipe = 72— pe " Type € {CNN, AM} (3)
|pType| |pType| + €
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The dual-decoder verification mechanism operates through dynamically gener-
ated local affinity maps that encode the semantic relationships among neighbor-
ing pixels:

Js2 — J — 0 Jy — 1 _ It
mpos,Type - ]I(y - yTpr)’ mneg,Type =1 mpos,Type (4)

where 3/ denotes the category at position i from the ground truth (for LALR
in section or refined ground truth (for following Local Affinity Loss in sec-
tion , and yffype denotes the category at position 4 from the CNN decoder
prediction, AM decoder prediction or refined ground truth.

Potential noise pixels are identified through the affinity score assessment,
which detects pixels where both decoders exhibit conflicting affinity patterns—low
confidence in same category feature alignment but high confidence in different
category dissimilarity. The calculations are performed as follows:

Jst Jst

S senin) i S e hioem
i _ Z4jeNi(k) “Type''"pos,Type _ LejeNi(k) Type’ "neg,Type
Opos, Type =

) aneg,Type -

Jyi
ZjENi(k) Mios,Type 1 € ZJ'GN"'(k) mneg’Type +e

1 . 1
ynmbe = U pos Type 5 N aneg,Type > 5

Type
(5)
The refinement process employs entropy-weighted decision fusion to integrate
dual-branch confidence:

y:'eﬁne = yIZlOiSe : ]I(EéNN > EZ&M) ! y7AM + (1 - yllloise) ! yéroundTruth (6)

where E%ype = Entropy(pfrype) measures prediction uncertainty. When the
CNN decoder branch exhibits higher entropy (greater uncertainty in local pre-
dictions), the AM decoder branch’s prediction %, is prioritized for correction.

2.4 Loss Function

Local Affinity Loss enhances feature discriminability by enforcing semantic
consistency between positive/negative samples in the AM decoder predictions
using the refined ground truths. When computing the local positive and negative
affinity maps, mJ’ . and mneg Types Y’ Tepresents the label at position ¢ from
the refined ground truth y’ . (as detailed in section , ensuring semantic
consistency:

Z mj’i Z Jﬂ
]EN’“(k) pos refine’ ' “neg,AM JEN (k) neg,reﬁne pos,AM
L.g = E + (7)

i \/Zjej\/i(k) mp’os,reﬁne \/Zje./\/'i(k) mn’eg,reﬁne

Margin-based Smoothing Loss inspired by previous work [20], we intro-
duce dynamically adjusted, variance-aware boundary constraint, reducing ex-
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treme prediction values and alleviating overconfidence in noisy boundaries:

vi= |ReLU [ > Rl —=1 > pRul
JEN (k) JEN (k) (8)
v’ — min(v?) >

max(v?) — min(v?)

Linargin = )_ ReLU (max(p% -p' =8
where constant 8 is set following [20].

Overall Objective: The two losses complement the traditional Dice-CE loss:

L = Lpice + Lo +0.1(L£isfine 4 prefine) 1012 argin + 0.01 L.z (9)

Supervision Refined Supervision

'Supervision’ uses ground truth to guide CNN and AM decoder predictions,
while 'Refined Supervision’ uses refined ground truth for both branches. This
joint optimization balances model calibration and discrimination performance.

3 Experiments and Results

3.1 Datasets and Implementations

We validated our model on 12 public medical image segmentation datasets, in-
cluding ACDC [4] (MRI: Left Ventricle, Right Ventricle, Myocardium), iSeg2017 [26]
(MRI: Cerebrospinal Fluid, Gray Matter, White Matter), Brats2020 [I9] (MRI:
Whole Tumor, Tumor Core, Enhancing Tumor), ISLES2022 [9] (MRI: Ischemic
Stroke), PROMISE2012 [I7] (MRI: Prostate), MyoPS2020 [30] (MRI: Left Ven-
tricle, Right Ventricle, etc.), MSD [2] Heart (MRI: Left Atrium), MSD [2] Hip-
pocampus (MRI: Anterior Hippocampus, Posterior Hippocampus), AMOS2022 [TT]
(MRI: Liver, Right Kidney, etc.), ATLAS2022 [I6] (MRI: Liver, Hepatic Tumor),
CuRIOUS2022 [27] (Ultrasound: Tumor), and FLARE2021 [I8] (CT: Liver, Kid-
ney, Spleen, Pancreas). Datasets were split into 4:1:1 training, validation, and
test sets. The training was performed on an NVIDIA GeForce RTX 4090 GPU
using the SGD optimizer with a 0.01 learning rate for 500 epochs. During in-
ference, the segmentation result is the AM branch output. Performance was
evaluated using Dice Coefficient (DSC), 95% Hausdorff Distance (HD95) for
discrimination, and Expected Calibration Error (ECE) and Classwise Expected
Calibration Error (CECE) with M = 15 bins focusing on foreground regions to
highlight method differences.

3.2 Results

As shown in Table[I] AffinityUMamba outperforms other methods. For instance,
the largest DSC improvement is on the ATLAS2022 dataset (+0.030), com-
pared to nnUNet’s 0.746. In terms of HD95, the greatest reduction occurs on
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Table 1. Segmentation performance comparison (Dice Coefficient [DSC] and 95%
Hausdorff Distance [HD95]) across 12 datasets. Bold: best results; Underlined: second-
best.

Dataset | nnUNet [I0]  |AttentionUNet [22]|  UNet++ [2]]

SegResNet [2I] | SwinUNETR [§] Ours
| DSC  HDY5 | DSC  HD95 | DSC  HD95 | DSC  HD95 | DSC  HDY5 | DSC  HD95

ACDC 0.913 0.844 2.162 0.897 1.704 0.874 2.168 0.876 1.961 0.925 1.122
iSeg2017 0.919 0.912 1.138 0.914 1.192 0.908 1.197 0.909 1.192 0.922 1.137
Brats2020 0.847 0.824  10.258 0.847 8.219 0.831 8.954 0.846 9.834 0.852  5.197
ISLES2022 0.779 0.787  3.281 0.765 4.109 0.760 4.126 0.768 5.516 0.816  3.999
PROMISE2012 0.872 0.854 4.531 0.862 4.462 0.840 6.201 0.844 5.876 0.882  3.490
MSD Hippocampus | 0.886 0.883 1.474 0.881 1.439 0.872 1.499 0.883 1.468 0.887  1.367
ATLAS2022 0.746 0.701 30.817 0.725 27.663 0.694 30.147 0.700 28.665 0.776  14.609
CuRIOUS2022 0.782 0.742  56.612 0.767  46.608 | 0.764  35.916 | 0.763  39.452 | 0.802 35.221
MyoPS2020 0.702 0.629  16.448 0.630  15.636 | 0.641 15.591 | 0.654  14.291 | 0.716 10.682
AMOS2022 0.865 0.821 14.250 0.813  10.408 | 0.796  22.308 | 0.826 8.358 0.879  5.087
MSD Heart 0.930 0.931 3.782 0.933 3.606 0.923 4.405 0.927 3.859 0.934 3.031
FLARE 0.913 0.871 47.009 0.845 55.506 0.835 62.160 0.851 37.776 0.927 7.727

Table 2. Calibration performance comparison (Expected Calibration Error [ECE| and
Classwise ECE [CECE]) across 12 datasets.

Dataset | nnUNet [T0]  |AttentionUNet [22]] UNet++ [23] | SegResNet 2I] | SwinUNETR [§] | Ours

| ECE CECE | ECE CECE | ECE CECE | ECE CECE | ECE CECE | ECE CECE
ACDC 0.0613  0.0314 | 0.0777  0.0837 | 0.1178 0.0816 | 0.1726  0.1222 | 0.0531  0.0753 | 0.0493 0.0267
iSeg2017 00412 00310 | 0.0542 0.0384 | 0.1487 0.0996 | 0.0404 0.0327 | 0.0367 0.0298 | 0.0345 0.0284
Brats2020 01682 03114 | 0.1604 0.3154 | 0.1491 0.3130 | 0.1610 0.3144 | 0.1669 0.3161 |0.1232 0.3105
ISLES2022 0.2150  0.2270 | 0.1844 0.1984 | 0.1314  0.1972 | 0.1999 0.2838 | 0.1722  0.2695 | 0.1240 0.1746

PROMISE2012 0.1164 0.1569 | 0.1031  0.2802 0.1083  0.2794 0.1593  0.3406 | 0.1231 0.2880 | 0.0753 0.1653
MSD Hippocampus | 0.0904  0.0663 | 0.0938  0.1202 | 0.0946  0.1299 | 0.1382  0.1432 | 0.0552 0.0943 | 0.0829 0.0623

ATLAS2022 0.1794  0.1693 | 0.1971 0.1866 | 0.1694 0.1728 | 0.1492  0.1633 | 0.1731  0.1796 | 0.0810 0.1002
CuRIOUS2022 0.1346  0.3875 | 0.1458  0.3139 | 0.1471  0.4051 | 0.1539  0.4470 | 0.1394 0.4056 | 0.0788 0.2708
MyoPS2020 0.1530  0.0545 | 0.0571  0.0543 | 0.1098  0.0539 | 0.0499 0.0542 | 0.1239  0.0549 | 0.1535 0.0538
AMOS2022 0.3509  0.0509 0.4016  0.0615 0.3643  0.0542 0.4190  0.0642 | 0.3077  0.0457 | 0.0966 0.0126
MSD Heart 0.0258  0.0398 0.0533  0.1223 0.0686  0.1276 0.0725  0.1537 | 0.0574  0.1155 | 0.0251 0.0381
FLARE2021 0.2117  0.1820 | 0.0980 0.0486 | 0.3450  0.2710 | 0.3564  0.2667 | 0.3177  0.1640 | 0.1844  0.3782

the FLARE dataset (—14.058), compared to nnUNet’s 21.785. This is primar-
ily due to our method’s multi-module collaborative design: the AM module
models global anatomical dependencies using Mamba with linear time com-
plexity, capturing global topological constraints; the PNE aggregates neighbor-
hood grayscale features adaptively with a multi-scale Gaussian kernel to im-
prove boundary smoothness and connectivity; the LALR corrects noisy labels
via a dual-branch confidence selection mechanism. Additionally, the TAE mod-
ule dynamically weights neighborhood information based on feature similarity
thresholds, alleviating boundary blurring in low-contrast regions.

AffinityUMamba also demonstrates significant calibration improvements across
datasets, as shown in Table[2] The largest ECE reduction occurs on the AMOS2022
dataset (—0.2111), compared to SwinUNETR’s 0.3077. For CECE, the largest
decrease also occurs on AM0OS2022 (—0.0331), compared to SwinUNETR’s 0.0457.
This advantage stems from key design elements: Margin-based Smoothing Loss
dynamically perceives boundary constraints, suppressing overconfidence in noisy
boundaries, while the Local Affinity Loss enforces semantic consistency between
pseudo-labels and refined ground truths. The LALR successfully avoids over-
fitting to the toxic noisy labels, consequently reducing the prediction uncertainty
originating from data uncertainty and improving the model segmentation per-
formance.
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Fig. 2. Segmentation outputs and confidence maps on the AMOS2022 dataset. Confi-
dence maps represent predictive entropy on a 0-1 scale, with yellow indicating higher
confidence. Anatomical labels: liver (purple), gallbladder (orange), spleen (green), pan-
creas (red), kidney (blue).

Table 3. Ablation study evaluating module contributions on the ACDC dataset.

| Discrimination | Calibration
Target | Right Ventricle |  Myocardium |  Left Ventricle | Avg. |
| Dpsc HDY5 | DSC HD95 | DSC HDY5 | DSC HD95 | ECE CECE

AffinityUMamba (w/o LALR, IAE, PNE)
AffinityUMamba (w/o LALR)
AffinityUMambagurs

0.9015 1.4570
0.9089 1.3045
0.9143  1.1898

0.9043 1.1439
0.9023 1.1398
0.9047  1.1353

0.9565  1.0207
0.9543 1.0407
0.9548 1.0414

0.9214 1.2005
0.9219 1.1617
0.9246  1.1222

0.0496 0.0291
0.0541 0.0316
0.0493  0.0267

In Fig. [2] visual predictions on the AMOS2022 dataset show that our method
produced the best boundary delineation, especially for hard regions such as the
gallbladder (orange) and pancreas (red), with a significant reduction in misclas-
sified pixels at organ boundary. The significantly calibrated prediction uncer-
tainty is demonstrated on the pixel-wise entropy confidence map, where high
uncertainty is precisely concentrated on complete organ boundaries with a clean
background at homogeneous regions.

Table [3| presents ablation study results. Compared to the baseline method
(AffinityUMamba w/o LALR, TAE, PNE), adding IAE and PNE improves dis-
criminative performance slightly (DSC: 0.9214 — 0.9219, HD95: 1.2005 — 1.1617),
but calibration performance decreases (ECE: 0.0496 — 0.0541, CECE: 0.0291 —
0.0316), due to the absence of the LALR mechanism. Despite more ambiguous
boundaries in the right ventricle and myocardium, segmentation performance
still improves (DSC: Right Ventricle 0.9089 — 0.9143, Myocardium 0.9023 —
0.9047, HD95: Right Ventricle 1.3045 — 1.1898, Myocardium 1.4398 — 1.1353).
In contrast, the left ventricle, with clearer boundaries, shows limited improve-
ment (DSC: 0.9543 — 0.9548 HD95: 1.1617 — 1.1222).

4 Conclusion

This study presents AffinityUMamba, a weakly supervised framework that ad-
dresses annotation uncertainty in medical image segmentation through weak
supervision. By integrating convolutional networks with state space models, our
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approach effectively captures anatomical dependencies while mitigating bound-
ary ambiguities. The synergistic architecture combines global context modeling
with adaptive local refinement, demonstrating exceptional performance across
12 multi-modal datasets. Experimental results show significant improvements in
both discriminative and calibration performance compared to existing state-of-
the-art methods. The framework resolves annotation-caused data uncertainty,
proving particularly valuable for MRI soft tissue analysis while maintaining
promising generalizability across CT and ultrasound modalities. This work es-
tablishes a new insight and a reliability-aware paradigm for medical image seg-
mentation using public datasets, bridging the gap between computational models
and practical clinical decision-making needs.
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