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Abstract. Early and accurate diagnosis of Alzheimer’s disease (AD)
is crucial for effective treatment and patient care. In clinical practice,
physicians can achieve precise diagnoses through the integration of mul-
timodal image information, and it is desired to develop automated diag-
nosis approaches based on the multimodal information. However, ex-
isting multimodal deep learning methods face a critical paradox: al-
though models excel at leveraging joint features to improve task perfor-
mance, they often neglect the optimization of independent representa-
tion capabilities for uni-modal. This shortcoming, known as Modality
Laziness, stems from imbalanced modality contributions within con-
ventional joint training frameworks, where models predominantly rely
on dominant modalities and neglect to learn weaker ones. To address
this challenge, we propose UniCross, a novel balanced multimodal learn-
ing paradigm. Specifically, UniCross employs separate learning pathways
with specialized training objectives for each modality to ensure compre-
hensive uni-modal feature learning. In addition, we design a Metadata
Weighted Contrastive Loss (MWCL) to facilitate effective cross-modal
information interaction. The MWCL leverages patient metadata (e.g.,
age, gender, and years of education) to adaptively calibrate both cross-
modal and intra-modal feature distances between individuals. We vali-
dated our approach through extensive experiments on the ADNI dataset,
using structural MRI and FDG-PET modalities for AD diagnosis and
mild cognitive impairment (MCI) conversion prediction tasks. The re-
sults demonstrate that UniCross not only achieves state-of-the-art over-
all performance, but also significantly improves the diagnosis perfor-
mance when only a single modality is available. Our code is available
at https://github.com/Alita-song/UniCross.
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1 Introduction

Alzheimer’s disease (AD), the predominant cause of dementia, is a neurodegen-
erative disorder characterized by progressive cognitive decline [2]. It poses severe
challenges to healthcare systems worldwide, particularly in developing countries
and regions. Given the current lack of effective clinical treatments, early diagno-
sis and intervention for AD have become increasingly crucial [18]. Mild Cognitive
Impairment (MCI) is a potential prodrome of AD, and it can be categorized as
progressive MCI (pMCI) and stable MCI (sMCI) based on whether it progresses
to AD within 36 months [21]. Identifying individuals with pMCI is essential for
early intervention and treatment planning, as these patients are at a higher risk
of converting to AD compared to sMCI patients, who maintain relatively stable
cognitive function.

Given the complexity of pathological mechanisms and heterogeneity of clin-
ical manifestations in Alzheimer’s disease, recent research has increasingly fo-
cused on multimodal diagnostic approaches [27]. Among the various modalities,
structural magnetic resonance imaging (sMRI) and positron emission tomogra-
phy (PET) are the most commonly used [24]. sMRI provides detailed anatomical
information to assess structural brain changes, while PET detects early func-
tional changes by measuring cerebral glucose metabolism. Some studies have
achieved impressive performance improvements by fusing information from these
two modalities [22,17], which is reasonable since signals from different modalities
often provide complementary information. However, recent studies [10,28] have
shown that while benefiting from cross-modal interactions, these methods fail to
adequately learn uni-modal features, potentially leading to suboptimal overall
performance. This phenomenon is referred to as Modality Laziness [3]. Specif-
ically, during multimodal representation learning, models tend to rely heavily
on dominant modalities while neglecting weaker ones, resulting in insufficient
learning of uni-modal features.

Several works have attempted to address the modality laziness problem by
balanced training strategies [30] or gradient modulation methods [19,5]. How-
ever, these methods still follow the widely used joint training framework, which
sets uniform learning objectives for all modalities, inherently leading to insuffi-
cient uni-modal feature learning. To explore possible solutions beyond the con-
ventional joint training framework, some recent approaches [31,9] have reformu-
lated it into a novel multimodal alternating learning paradigm. However, this
reformulation sacrifices effective cross-modal information interaction.

Inspired by recent advances [4,31] in balanced multimodal representation
learning, we propose UniCross, a novel multimodal learning paradigm that en-
sures sufficient uni-modal learning while maintaining effective cross-modal in-
teractions for early diagnosis of AD and prediction of MCI conversion. Specif-
ically, to tackle modality laziness, we design separate learning pathways with
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specialized training objectives for each modality. Moreover, as naive separate
training can lead to difficult feature fusion and lack of cross-modal interaction
due to the heterogeneity across modalities [3], we introduce a shared head and a
multimodal contrastive loss to facilitate effective cross-modal information inter-
action. In particular, considering that the symptoms of Alzheimer’s disease may
present demographic differences, we design a Metadata Weighted Contrastive
Loss (MWCL) that leverages metadata (age, gender, and years of education) to
adaptively calibrate both intra-modal and cross-modal feature distances in the
representation space. Finally, we freeze the parameters of the modality-specific
encoder and retrain a concatenation-based feature fusion module to obtain final
predictions. Extensive experiments on the ADNI dataset [11] demonstrate that
our method not only achieves state-of-the-art performance in both AD diagnosis
and MCI conversion prediction tasks, but also improves the performance when
only a single modality is available.

2 Methodology

2.1 Overall Design of UniCross

The overall design of UniCross is shown in Fig. 1. It adopts a two-stage training
strategy to achieve balanced multimodal learning. The encoder training stage
focuses on learning comprehensive uni-modal representations while maintaining
effective cross-modal interactions, and the fine-tuning stage performs multimodal
fusion for final prediction. We use a 3D patch embedding module that employs
one 3D convolution with a kernel size and stride equal to the patch size to
partition the input image into non-overlapping patches and convert them into
embedding vectors for subsequent processing. To effectively capture long-range
global dependencies in high-dimensional 3D medical images, we employ Vision
Transformer (ViT-B) as our modality-specific encoders [16]. For the metadata,
we encode it and then use a linear transformation as the meta encoder. During
fine-tuning, we employ a simple yet effective concatenation-based fusion module
to aggregate features from both image modalities.

2.2 Encoder Training

Uni-modal separation For a given dataset, there are three modalities M =
{sMRI,PET,metadata}. The i-th sample in a training batch of N samples can
be represented as {si,pi, ci, yi}, where si, pi, and ci are the sMRI image, PET
image, and metadata, respectively, and yi ∈ {0, 1} is the binary disease label.

To alleviate modality laziness, unlike existing methods, we do not perform
multimodal fusion during the encoder training stage. Instead, we propose sep-
arate learning pathways with specialized training objectives for each modality.
After patch embedding, si and pi are fed into modality-specific encoders Es and
Ep to obtain features f s

i and fp
i respectively. For each modality, we employ sepa-

rate classifiers ϕs and ϕp to predict the labels. The uni-modal training objective
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Fig. 1. The proposed UniCross framework, including the encoder training stage and
fine-tuning stage. The top right corner shows the specific implementation of the MWCL.
Note that we only show the cross-modal MWCL.

is defined as:

Luni =

N∑
i=1

[H(yi, ϕs(f
s
i )) +H(yi, ϕp(f

p
i ))], (1)

where H is the softmax loss.
Moreover, due to the heterogeneity between modalities, independent training

processes may lead to discrepancies in the representation spaces. To bridge this
gap, we introduce a shared head (classifier) ϕsp that processes features from both
modalities with the following training objective:

Lsp =

N∑
i=1

[H(yi, ϕsp(f
s
i )) +H(yi, ϕsp(f

p
i ))]. (2)

MWCL To further facilitate effective cross-modal interaction, we propose the
MWCL, which is a contrastive loss that aligns sMRI and PET images in the
feature space with the calibration of patient metadata. First, since samples from
the same category are expected to be semantically similar, we extend the conven-
tional multimodal contrastive loss to supervised contrastive learning, leveraging
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class labels to define positive and negative sample pairs. Moreover, considering
that AD symptoms are inherently correlated with demographic characteristics,
even samples within the same category may exhibit varying distances in the
feature space. Thus, we further incorporate metadata about demographic char-
acteristics, including age, gender, and years of education in the MWCL. We
assume that patients with similar demographic characteristics tend to exhibit
similar pathological patterns and should therefore maintain closer proximity in
the feature space. Based on the above motivations, the MWCL is computed as

LMWCL = − 1

4N

∑
v,v′∈{s,p}

N∑
i=1

N∑
j=1

wij log
exp(fvi · fv′

j /τ)∑N
k=1 exp(f

v
i · fv′

k /τ)
(3)

where v and v′ represent modality types, τ is a temperature parameter, and
wij represents the normalized adaptive weight determined by disease labels and
metadata for the sample pair (i, j). The weight is computed as

wij =
w̃ij∑N
j=1 w̃ij

, (4)

where

w̃ij = mij · ψ(f ci , fcj ) with mij =

{
1, if yi = yj

0, otherwise
. (5)

Here, mij is a binary mask that equals 1 if samples i and j belong to the same
class, and 0 otherwise; f c

i and f c
j are meta-features obtained from the meta

encoder Ec; ψ(·, ·) is a cosine similarity function that measures the relevance
between samples based on meta-features. Note that Eq. (3) performs contrastive
learning not only between sMRI and PET images but also within the single
modality of sMRI or PET images (when v and v′ are identically s or p). This
design further enhances the representation of each modality.

The MWCL adaptively calibrates both intra-modal and cross-modal dis-
tances in the feature space. By incorporating meta-information into the con-
trastive learning framework, the MWCL encourages the model to learn repre-
sentations capable of distinguishing between meta-related and disease-related
brain changes.

The final training objective L of UniCross combines Luni, Lsp, and LMWCL:

L = Luni + Lsp + LMWCL (6)

2.3 Fine-tuning

During fine-tuning, we freeze all parameters of the trained encoders to preserve
the learned features. Then, the outputs of the encoders are fused by concatena-
tion and the fused result is fed into a fully connected layer for final prediction.
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2.4 Implementation Details

In the encoder training stage, following [22], we use a Cosine Annealing with
Warm Restarts strategy, where the initial period was set to 10, the period multi-
plication factor was set to 3, and the minimum learning rate was set to 1×10−5.
The model is trained for 40 epochs with a batch size of 8 and a contrastive
learning temperature parameter τ of 0.07. In the fine-tuning stage, we freeze the
encoders and apply the Adam optimizer with 10 training epochs and a learning
rate of 0.001.

3 Experiments and Results

3.1 Data Description and Experimental Settings

Paired sMRI and PET images were collected from the ADNI [11] dataset. In
total 1,044 subjects were selected in the experiment, including 284 AD patients,
385 normal controls (NC), 183 pMCI subjects, and 192 sMCI subjects. sMRI was
preprocessed with FreeSurfer [6] for motion correction, intensity normalization,
and skull stripping. sMRI and PET images were coregistered to the Colin27 [8]
template with FSL FLIRT [12]. In addition, we applied extra smoothing to the
PET images [22]. All images were resampled to 128 × 128 × 128 with a resolution
of 1 × 1 × 1 mm3. Data augmentation [26] was performed on the training set,
including random 3D rotation, random zoom, and random shift. The metadata
included the age, gender, and years of education, where categorical variables
(gender) were converted with one-hot encoding and continuous variables (age
and years of education) were standardized with z-score normalization.

All experiments were conducted with five-fold cross-validation. Note that for
sMCI/pMCI classification, we followed [13] and used the model pre-trained on
the AD early diagnosis task for initialization. Three metrics were used to evaluate
the performance: accuracy (ACC), F1-score (F1), and area under the receiver
operating characteristic curve (AUC).

3.2 Comparison with the State-of-the-art Methods

We compared our method with several state-of-the-art multimodal fusion ap-
proaches on both AD/CN classification and MCI conversion prediction tasks.
The compared methods include early and middle fusion strategies: 1) MFNET [1],
which uses a Multi-Fiber architecture and multiplexer modules to facilitate mul-
timodal information interaction; 2) MDL-NET [22], which employs a multi-fusion
joint learning module to improve global, local and latent feature representation;
3) SSFTT [25], which combines convolutional neural networks and transformers
to capture multimodal features and high-level semantic features; 4) DiaMond
[17], which utilizes self-attention, bi-attention, and a RegBN mechanism for ef-
fective multimodal fusion. Our method was also compared with recent balanced
multimodal learning methods, including: 5) OGM-GE [19], which employs real-
time gradient modulation to adaptively control the optimization process of each
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Table 1. Comparison with State-of-the-art methods on AD/CN and sMCI/pMCI clas-
sification tasks.

Method AD/CN sMCI/pMCI
ACC F1 AUC ACC F1 AUC

MFNet [1] 88.94±2.32 86.45±3.20 93.69±1.71 71.93±6.07 67.04±8.05 82.57±4.19
MDL-Net [22] 89.68±2.98 87.20±4.25 96.17±1.10 71.90±7.07 65.21±13.36 81.78±2.23
SSFTT [25] 92.97±0.76 91.72±0.81 96.12±1.01 78.87±1.38 76.24±2.82 85.05±2.61

DiaMond [17] 88.49±1.76 86.55±1.97 93.82±2.08 73.79±3.01 69.78±4.35 79.93±3.23
OGM-GE [19] 92.23±1.73 90.98±1.63 95.91±0.52 75.92±3.18 72.37±4.81 83.95±3.88
DI-MML [4] 90.58±1.45 88.51±2.11 95.79±0.84 78.86±6.10 75.54±8.54 82.70±5.69
UniCross 93.57±1.39 92.30±1.24 97.04±1.24 79.67±3.36 78.84±4.09 85.22±3.08

Table 2. An ablation study on the AD/CN classification task.

Method ACC F1 AUC
Shared (w/o MWCL) 92.53±1.88 90.99±2.16 96.56±1.25

MWCL (w/o shared head) 91.18±2.23 89.45±2.67 95.57±1.83
CLIP [23]+Shared 90.43±0.98 88.27±1.23 95.07±1.33

SupCon [14]+Shared 90.88±0.57 89.23±0.65 96.11±1.04
DeCUR [29]+Shared 92.38±1.72 91.02±1.96 96.50±1.33

UniCross 93.57±1.39 92.30±1.24 97.04±1.24

modality; 6) DI-MML [4], which also adopts separate training pathways while
using dimension-decoupled unidirectional contrastive (DUC) loss for cross-modal
information transfer.

The performance of each method is shown in Table 1. For AD/CN classifica-
tion, our method achieves the best performance across all metrics, with an ac-
curacy of 93.57%, F1-score of 92.30%, and AUC of 97.04%. The MCI conversion
prediction task is generally more challenging due to the subtle differences be-
tween stable and progressive MCI. Even in this challenging scenario, our method
demonstrates superior performance with a 79.67% accuracy, 78.84% F1-score,
and 85.22% AUC. These results demonstrate that our UniCross framework not
only excels in standard AD diagnosis but also shows promising capability in the
more challenging task of early conversion prediction.

3.3 Ablation Study

Next, we explore the importance of the shared head and MWCL in UniCross with
an ablation study on the AD/CN classification task. The results are shown in Ta-
ble 2. First, we removed the shared head (replaced by separate heads) or MWCL,
both which lead to lower classification performance. In addition, we compared
the MWCL with other comparative losses, including: 1) CLIP [23] loss, which
maximizes the similarity between paired cross-modal inputs while minimizing
unpaired samples from different modalities; 2) SupConloss [14], which pulls to-
gether samples from the same class while pushing apart samples from different
classes; 3) DeCUR [29], which uses multimodal redundancy reduction to learn
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Table 3. Accuracy of linear probing on encoders for various multi-modal late-fusion
methods and uni-modal training on the AD/CN classification task.

Method sMRI PET Multi
Uni1 80.72±1.47 - -
Uni2 - 90.14±1.72 -

Concat 78.77±1.84 88.64±1.08 91.63±1.37
Sum 78.48±0.52 90.73±1.32 90.73±1.86

Film [20] 82.37±2.50 84.76±2.41 86.85±1.20
Gated [15] 74.29±3.18 90.88±1.18 90.43±1.28

CrossAttention [7] 81.61±2.13 88.34±1.67 91.78±3.23
UniCross 83.71±0.58 92.07±0.11 93.57±1.39

common and unique representations of the modality. These contrastive losses
were integrated with the proposed shared head, and their results are worse than
that of UniCross, which further confirms the benefit of the proposed MWCL.

3.4 Effectiveness in Addressing Modality Laziness

Finally, following [31], to validate the effectiveness of UniCross in addressing
modality laziness, we performed linear probing on encoders trained by differ-
ent multimodal late fusion approaches for AD/CN classification. We compared
UniCross with various late fusion methods, which can be categorized into two
groups: (1) traditional multimodal fusion methods, including summation (Sum),
concatenation (Concat), and multimodal CrossAttention [7]; (2) modulation-
based fusion methods, including FiLM [20] and Gated [15].

The accuracy of each method is shown in Table 3, where the results of uni-
modal baselines (Uni1 for sMRI and Uni2 for PET images) are given for refer-
ence. Concat, Sum, and Gated show degraded performance on sMRI (78.77%,
78.48%, and 74.29%, respectively), indicating the presence of modality laziness
where the model relies heavily on the stronger modality (PET) while compro-
mising the weaker one (sMRI). Although Film and CrossAttention facilitate
more effective cross-modal interactions, they only slightly improve the sMRI
performance while significantly degrading the PET performance (to 84.76% and
88.34%, respectively). In contrast, our UniCross framework not only achieves
superior overall performance (93.57%) but also improves the performance for
each individual modality, with an increase of 2.99% for sMRI and 1.93% for
PET images compared to the uni-modal baselines. This demonstrates that our
method effectively alleviates modality laziness.

4 Conclusion

We have proposed UniCross, a balanced multimodal learning framework that ef-
fectively addresses modality laziness. Through separate learning pathways with
specialized training objectives, our approach ensures comprehensive uni-modal
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feature learning while maintaining effective cross-modal interactions by propos-
ing the MWCL. The MWCL leverages patient metadata to adaptively cali-
brate feature distances in the representation space. Extensive experiments on
the ADNI dataset demonstrate that UniCross not only achieves state-of-the-art
performance in both AD diagnosis and MCI conversion prediction tasks but also
significantly improves the performance given a single modality.
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