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Abstract. Cardiovascular Optical Coherence Tomography (OCT) is hin-
dered by the brief imaging window provided by contrast agents, making
it challenging to capture high-resolution images of multiple plaques over
long vessel sections. Rapid catheter pullback and coarse spatial reso-
lution increase the likelihood of missing subtle pathologies and critical
plaque microstructures, compromising diagnostic accuracy. To address
this, we introduce CardioInterp, the first generative interpolation model
for cardiovascular OCT, designed to synthesize high-fidelity intermediate
B-slices, enhancing structural continuity and spatial resolution. Our ar-
chitecture integrates a latent diffusion framework with a novel Dual-Path
Fusion Decoder designed to ensure inter-slice structural continuity while
preserving microanatomical fidelity. Experiments on cardiovascular OCT
datasets demonstrate that CardioInterp achieves superior interpolation
quality (PSNR=28.59, SSIM=51.80%) at 6 times upscaling of B-slices
and spatial resolution, surpassing traditional medical image interpolation
methods and setting a new benchmark. This innovative computational
approach enables high-resolution imaging of long vessel sections within
a limited temporal window in cardiovascular OCT. The code is available
at: https://github.com/Lee728243228/CardioInterp.
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1 Introduction

Optical Coherence Tomography (OCT), characterized by its micrometer-scale
resolution and real-time volumetric imaging capability [15], has become an es-
sential diagnostic and therapeutic intervention for cardiovascular diseases, whose
data collection method is shown in Fig. 1. Nevertheless, two inherent limitations
exist. The first is the rapid cardiac motion, ranging from 60 to 100 beats per
minute. The second is the short effective dwell time of intravascular contrast
agents, approximately 1 to 3 seconds. These factors compromise imaging com-
pleteness. To ensure full vascular coverage under these constraints, clinicians
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must operate catheters at high pullback speeds during image acquisition, whose
speeds generally range from 20 to 40 mm/s. [1], creating significant spatial dis-
continuities between adjacent B-slices, with spacing of approximately 100 to 200
µm, severely degrading the integrity of vascular wall microstructures in recon-
structed 3D volumes and amplify diagnostic uncertainties [16]. Consequently,
bridging the resolution-completeness trade-off through computational B-slice in-
terpolation has become a pressing unmet need for achieving precision-guided
cardiovascular interventions.

Given the specialized dynamic imaging paradigm characteristic of cardiovas-
cular OCT system, cardiovascular OCT exhibits uniquely anisotropic resolution
characteristics: B-scan spacing of 2× 10−1mm versus 7× 10−3mm between ad-
jacent A-lines,which is different from common medical modalities such as CT
and MRI’s 0.5mm coronal/sagittal resolution and 1 ∼ 3mm axial slices. Cur-
rent medical image interpolation methodologies predominantly target CT/MRI
protocols [2, 14, 9, 11], yet inadequately address cardiovascular OCT’s marked
anisotropy-posing technical hurdles in cross-slice continuity and intra-slice fi-
delity preservation during volumetric reconstruction.

Thus, the pivotal challenge for reconstructing intermediate OCT slices is
establishing dynamically coherent representations under the anisotropic imaging
constraints inherent to cardiovascular OCT systems while requiring structural
continuity maintenance and feature fidelity preservation.

Large-motion interpolation [13, 5] exhibits similarities with highly anisotropic
medical slice interpolation, sharing the challenge of significant inter-frame vari-
ations. The implementation of diffusion models in modeling large inter-frame
motion demonstrates their robust capacity in capturing continuous feature tran-
sitions across substantial deformations—particularly evident in applications re-
quiring preservation of structural coherence under large geometrical discrepan-
cies. For example, VIDIM [5] generates highly realistic inter-frames, outperform-
ing other traditional flow-based video frames interpolation models.

Based on the aforementioned analysis, we propose CardioInterp-the first gen-
erative interpolation model for cardiovascular OCT B-slice sequences, designed
to synthesize high-fidelity intermediate slices while enhancing vascular structural
continuity. Our method is developed based on latent scan interpolation diffusion
model, that leveraging the 3D representation capacity and large-motion modeling
capabilities of diffusion models, providing a robust generative foundation for the
strong spatial anisotropy inherent to cardiovascular OCT. Further, we introduce
an innovative dual-path fusion decoder that employs a dual-path fusion strategy
to synergistically integrate deep semantic features and shallow texture features
during the decoding phase, ensuring both fine-grained detail preservation and
structural continuity in generated B-slices. Additionally, we incorporate Tempo-
ral Shift Module (TSM) [8] as the Pseudo-3D (P-3D) Block, a computational
optimization strategy that enhances slice-to-slice continuity without introducing
extra parameters or computational overhead. In summary, our contributions are:

1. We are the first focus on cardiovascular OCT interpolation, providing an
innovative approach enabling high-resolution imaging of long vessel.
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Fig. 1. OCT data collection and structure.

2. We propose CardioInterp, a latent scan interpolation diffusion model to-
gether with a novel dual-path fusion decoder, which utilize a dual path fusion
strategy to compensate for the generation continuity and details.

3. Comprehensive experiments demonstrate that CardioInterp manages to gen-
erate intermediate slice with anatomical continuity and fidelity and achieve
the state-of-the-art performance in both PSNR and SSIM.

2 Method

CardioInterp aims to generate intermediate scans with high fidelity and vascular
structural continuity. As illustrated in Fig. 2, it operates under the DDPM [4, 12,
3] paradigm, integrating binary masks and latent representations of the first and
final scans as conditional constraints to achieve interpolation via conditional
video generation [7]. Furthermore, we utilize a dual-path fusion decoder that
combines deep-level semantic and shallow-level texture features to enhance both
spatial continuity and microstructural fidelity in reconstructed scans.

2.1 Latent Scan Interpolation Diffusion Model

2D Autoencoder for OCT Compression CardioInterp employs a lightweight
2D autoencoder tailored for interpolation tasks. This module compress OCT scan
sample x0 ∼ pOCT (x0) where x0 ∈ RH×W×L×1 into the latent space to extract
image latent features z0 = E(x0) where z0 ∈ Rh×w×L×c, h = H/f and w = W/f .
f indicates a spatial downsampling factor.

Conditional DDPM for Interpolation For training the conditional diffusion
model, the gaussian noise is gradually added to the compressed latent code z0
through a diffusion process for t steps, which can be expressed as:

q(xt | x0) = N
(
xt;
√
ᾱtx0, (1− ᾱt)I

)
, (1)
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Fig. 2. (a) The overall architecture of CardioInterp. The first and final scans, together
with an interpolation mask, are used as conditions for intermediate scanes synthesis.
(b) An overview of the dual-path fusion decoder.

where xt is the noisy image at timestep t, ᾱt :=
∏T

i=1 αi, and αi is hyper-
parameters relevant to variance. Thus, xt can be formulated as:

zt =
√
ᾱz0 +

√
1− ᾱϵ; ϵ ∼ N (0, I). (2)

For the purpose of interpolation, intermediate latent codes have to be learned
conditioned on the first and last ones. Considering the OCT latent code: zt =
{zit}Li=1 where zit ∈ Rh×w×c and L is the total number of latent codes within
the OCT latent. For each slice in this latent volume, a binary mask is concate-
nated along the channel dimension into the latent tensor, serving as conditional
indicators to specify whether the latent code functions as an input constraint:

z̃t = {z̃it = [zit,m
i]}Li=1}Li=1, z̃

i
t ∈ Rh×w×(c+1), (3)

z̃0 = {z̃i0 = [zi0,m
i]}Li=1}Li=1, z̃

i
0 ∈ Rh×w×(c+1), (4)

z̃t ← z̃t ⊙ (1−m) + z̃0 ⊙m, (5)

where m = {mi}Li=1,m
i ∈ Rh×w×1 is the binary mask. To train the interpolation

task, the first and last binary masks {mi}2i=1,L are set to ones and others are
set to zeros. Thus, the training objective for the conditional DDPM becomes:

Lcondition(θ) := ∥ϵθ(z̃t, t)− ϵ∥22 . (6)
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Inference The first and last scans serve as inputs of the encoder, generating
latent representation {zi0}2i=1. Pure noise zT ∼ N (0, I) is added between slices
in z0 to get {zt}Li=1. Interpolation mask is then concated z̃t = [zt,m] and finally
iteratively denoised to generate interpolated latents.

2.2 Dual-Path Fusion Decoder

As shown in Fig. 2 (a), the dual-path fusion decoder integrates shallow-layer
features and deep semantic features from the encoder. Through a dual-path
fusion strategy, these hierarchical representations are fused within the decoder
architecture via residual learning, ensuring structural continuity and fine detail
retention in the synthesized scans. Furthermore, TSM [8] is employed as the P-3D
Block to explicitly model inter-slice dependencies, thereby enhancing slice-wise
consistency and coherence in the generated sequences without compromising
computational efficiency.

Dual-Path Fusion Strategy As illustrated in Fig. 2 (b), to capture the con-
tinuous variations between deep semantic features, we employ a feature flow
warping-based interpolation method for intermediate feature generation between
spatially discontinuous leading and trailing frames. In natural video interpola-
tion tasks, pre-trained motion estimation models are typically utilized to ex-
tract inter-frame motion cues for intermediate synthesis [17, 13, 10]. However,
cardiovascular OCT imaging lacks domain-specific deformation estimation mod-
els, rendering conventional motion priors unreliable. To mitigate this, we utilize
feature flow to estimate deformation flow among slices at the feature level [13],
enforcing anatomical continuity constraints.

The bidirectional feature flow is derived through cosine-similarity-guided cor-
respondence matching between deep semantic features extracted from the lead-
ing and trailing frames. For each spatial position (i, j) in feature f1

d , the pixel
in the other feature f0

d with the highest cosine similarity is selected as its corre-
sponding location, then the feature flow is obtained:

F 0→1(x, y) = argmax
i,j
⟨f0

d (x, y), f
1
d (i, j)⟩, (7)

where ⟨·, ·⟩ denotes cosine similarity. Similarly, the reverse feature flow F 1→0

can also be obtained. We estimate the feature flow from intermediate time δ to
time 0 as: F δ→0(x, y) = δF 1→0(x, y), and feature flow from intermediate time
δ to time 1 as: F δ→1(x, y) = (1 − δ)F 0→1(x, y). Upon knowing the two feature
flow field, we can synthesize the intermediate feature f̂δ

d via a time-weighted
interpolation:

f̂δ
d = δ · g(f0

d , Fδ→0) + (1− δ) · g(f1
d , Fδ→1), (8)

where g(·, ·) is backward warping. Finally, the estimated intermediate features
are added to features of decoder.

For the shallow layers, we implement linear interpolation to synthesize tex-
ture features between input frames. As shallow-layer features inherently exhibit
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Table 1. Quantitative results of different medical slice interpolation methods.

Methods ×2 ×4 ×6

PSNR↑ SSIM(%)↑ PSNR↑ SSIM(%)↑ PSNR↑ SSIM(%)↑
I3Net 29.18 56.50 28.96 53.97 - -
TSCNet 10.53 11.38 14.20 21.33 - -
FLAVR 29.09 51.18 28.60 47.78 28.07 47.56

Ours 29.94 59.21 28.78 56.00 28.59 51.80

higher spatial resolution and larger dimensionality, direct computation of fea-
ture flow estimation would substantially increase computational complexity and
memory consumption. To address this challenge, we adapt linear interpolation
specifically for shallow texture features, as shown in Eq. 9, to estimate the feature
f̂δ
s at time δ:

f̂δ
s = (1− δ) · f0

s + δ · f1
s . (9)

Temporal Shift for P-3D Decoding P-3D architectures typically employ 3D
convolutions (e.g., Conv3D with kernel size 3×1×1) to explicitly model temporal
dependencies in video sequences [18], which introduce extra computational over-
head due to spatiotemporal feature aggregation across adjacent frames. To mit-
igate computational demands while preserving inter-slice coherence, our frame-
work integrates TSMs to boost efficency and accuracy. This design effectively
redistributes temporal information through channel-wise feature shifting opera-
tions, achieving deformation-aware feature propagation along the temporal axis
without requiring explicit 3D convolutions.

3 Experiments and Results

3.1 Dataset

We curated the dataset that comprises real-world cardiovascular OCT sequences.
It contains 387 clinical cases, with a total of 788 volumetric scans, among which,
730 volumes were retained after excluding samples with sequence length below
20 slices. This dataset comprises 645 volumes acquired using the Vivolight in-
travascular OCT system and 85 volumes using the Abbott intravascular OCT
system, with each volume dimensioned at 400× 497× 1, 025 voxels. The B-slices
were captured at 0.2 mm inter-slice intervals, covering a vascular scanning length
of 80 mm. The A-lines were spaced at 7.47× 10−3 mm intervals, resulting in an
effective scanning depth of 7.66 mm.

3.2 Implementation Details

The dataset was partitioned into 14,224 contiguous sub-volumes of dimensions
20 × 497 × 1,025, then split into training, validation, and test sets at an 8:1:1
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Fig. 3. Visual comparison of different medical slice interpolation methods on our car-
diovascular OCT dataset.

ratio. For each sub-volume, we randomly selected a stride from 1, 2, 3 slices and
extracted 7× 256× 256 voxel patch volumes from the selected sub-volume using
the chosen stride with random positioning. Our implementation is primarily
based on video generation model LVDM [3]. We first train the autoencoder with
100 epochs on learning rate (lr) lr = 3.60× 10−5 and bs = 2. Then we train the
DDPM process with 60 epochs on lr = 8 × 10−5 and batch size (bs) bs = 10.
The training process is conducted on 4 NVIDIA A6000 GPUs. At inference, we
adopt DDIM sampler and unconditional guidance.

3.3 Comparisons with SOTA and Baselines

In Table 1, we summarized PSNR and SSIM scores on cardiovascular OCT
dataset under ×2, ×4 and ×6 upscale. Two types of methods were compared:
(1) medical slices interpolation methods, including I3Net [14], TSCNet [9], and
(2) kernel-based video interpolation method FLAVR [6]. I3Net and TSCNet were
trained under ×2 upscale and evaluated for ×2 and ×4 upscales. FLAVR was
trained and evaluated under ×2, ×4, and ×6 upscales. For CardioInterp, it was
trained under ×6 and evaluated under ×2, ×4 and ×6 upscales.

As shown in Table 1, CardioInterp achieved the best performance of PSNR
28.59 and SSIM 51.80% in ×6 upscale tasks, outperforming FLAVR by mar-
gins of +0.52 dB and 4.24% in the respective metrics. Remarkably, CardioInt-
erp demonstrated zero-shot generalization capability to ×2 and ×4 scaling fac-
tors despite being exclusively trained on ×6 upsampling objectives. Through
inherent spatial integration learned during high-ratio upscaling training process,
CardioInterp achieved competitive PSNR and SSIM scores of +0.76 and 2.71%
compared to SOTA models specifically optimized for ×2 upscale tasks. Visual
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Table 2. Ablation studies of different modules in CardioInterp on ×6 upscaling.

P3D Dual-Path Addition Dual-Path Fusion PSNR↑ SSIM(%)↑
% % % 27.91 46.13

! % % 28.08 46.67

! ! % 28.24 49.07

! ! ! 28.59 51.80

GT

Ours

Scan 1 Scan 2 Scan 4 Scan 6 Scan 7

Fig. 4. Visual results used to demonstrate the continuity of generated slices.

comparisons in Fig. 3 show CardioInterp achieves enhanced of vascular struc-
tures in synthetic images, with higher clarity in critical anatomical features such
as vessel wall boundaries and stratified intraluminal layers. Fig. 4 demonstrates
the continuity of generated slices with visual output. As there is no sagittal view
to prove structure continuity of generated B-slices, we put a sequence of slices
and corresponding error maps to show the continuity of the vascular wall.

3.4 Ablation Studies

We conduct comprehensive ablation experiments to compare our proposed Car-
dioInterp with different variants in Table 2. Note that dual-path addition denotes
that dual path features are added directly into the decoder rather than fused
using flow and linear interpolation. Quantitative results in Table 2 reveal that
With the employment of the dual-path strategy, the continuity and fidelity of
the generated results have been enhanced. Specifically, the PSNR has increased
by +0.51, and the SSIM has increased by +5.13%.

4 Discussion and Conclusion

In this work, we present CardioInterp, the first model for cardiovascular OCT
volume interpolation. CardioInterp integrates the diffusion process with expres-
sive advanced spatiotemporal modeling, featuring a novel decoder that enhances
structural continuity and imaging fidelity. Extensive experiments were conducted
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to demonstrate its effectiveness, achieving the highest PSNR and SSIM scores
compared with previous approaches. CardioInterp successfully synthesizes con-
tinuous high-fidelity OCT B-slices with preserved tissue microstructures under
strong anisotropic acquisition patterns. However, the current implementation is
limited to a reconstruction scale of 256 × 256 pixels, which is below the stan-
dard diagnostic-grade resolution of 497 × 1, 025 pixels. Future research should
address these interpolation scale constraints to maintain continuity and fidelity
for accurate intravascular assessments.
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