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Abstract. Spatial transcriptomics (ST) is crucial for understanding cel-
lular heterogeneity and tissue organization. However, integrating spa-
tial transcriptomics across multiple slices remains challenging for down-
stream analyses, as ST slices may exhibit significant batch effects. Cur-
rent methods mostly depend on forced integration via contrastive learn-
ing, which may ignore the inherent biological heterogeneity, thus impact-
ing the performance of downstream analyses. To address these challenges,
we introduce MoST-IG, a multimodal framework for morphology-guided
multi-slice ST integration. MoST-IG comprises two key components: (1)
Cross-modal alignment between histology prior and ST. We integrate his-
tological patterns derived from the pathological foundation model with
ST using our proposed Visual-Genomic Graph Optimal Transport (VG-
GOT) module. This visual-genomic alignment preserves biological het-
erogeneity through morphology-guided regularization while enriching the
spatial context of ST data with morphological features to provide a more
discriminative representation and enhance downstream performance. (2)
Integration of Multi ST-Slices. A multi ST-slices Contrastive Learning
(mST-CL) module is designed via two complementary triplet losses—one
for both inter-slice and intra-slice cell type mapping. Experiments show
that MoST-IG outperforms leading methods in both cancer grading and
detection, as well as tissue structure clustering, while better preserving
tissue landmarks in multi-slice ST integration. The code is available at
https://github.com/HKU-MedAI/MoST-IG.
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ing - Graph Optimal Transport.

1 Introduction

Spatial transcriptomics (ST) has revolutionized biological research by enabling
gene expression profiling while preserving spatial context, offering unprecedented
insights into tissue heterogeneity and disease mechanisms [T2]. Integrating mul-
tiple spatial transcriptomics (ST) slices is challenging due to batch effects, which
are random biases introduced by technical factors during the gene sequencing
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process. These biases can stem from variations in reverse transcriptase enzyme
efficiency and inconsistencies in other stages of the sequencing protocol. These
factors can lead to non-biological variations between data from different batches
that obscure biological signals [3/4J5]. Many existing integration methods [G/7]S]
focus on learning shared latent embeddings for multiple spatial transcriptomics
(ST) slices. However, most of these methods fail to consider an essential anatom-
ical resource: the rich morphological patterns found in histology images that
provide insight into high-resolution tissue architecture. This oversight is crucial
because prior studies indicate that histological features can capture semantic re-
lationships between ST spots that extend beyond mere physical proximity [9/T0].
The limited use of morphological semantics in current approaches significantly
hinders the ability to achieve biologically meaningful integration across ST slices,
as the absence of anatomical constraints might lead to over-mixing. When over-
mixing occurs, different slices are forcibly integrated, erasing valuable differences
such as the differential expression of distinct cell types. As a result, critical spa-
tial and molecular patterns essential for understanding tissue heterogeneity are
obscured after integration.

We are the first to identify and balance the twin pitfalls of over-mixing (ob-
scuring biological heterogeneity) and under-mixing (failing to remove batch ef-
fects) in multi-slice ST integration, and propose Morphology-guided Spatial
Transcriptomics InteGration (MoST-IG, Fig. to explicitly leverage histo-
logical morphology guidance. For Visual-Genomics Graph Optimal Transport
(VG-GOT), the benefits of our cross-modal visual guidance are twofold: First,
histology images act as anatomical constraints, preventing over-mixing among
different ST slices by preserving distinct cell-type differences during integration.
Second, histology images capture spatial organization and biological meaning in
each ST slice—such as tissue zonation and cellular neighborhoods—which are
not present in ST data. Incorporating these features improves the identification
of hidden tissue structures beyond just molecular profiles. Specifically, MoST-
IG first extracts histology image features using a pathology foundation model
to serve as visual histological guidance. Then, two modality-specific graphs are
constructed for each slice: a histology graph based on the extracted guidance and
a gene expression graph based on ST spot embeddings. The VG-GOT module
is designed to align these two modality graphs at both node feature distribu-
tion level and graph topology level [11]. In addition, to prevent under-mixing
we incorporate the multi ST-slices Contrastive Learning (mST-CL) module to
enhance the slice genomic integration, which uses two complementary triplet
losses—one for inter-slice cell type mapping and another for intra-slice cell type
mapping.

In summary, our key contributions are as follows: (1) We propose MoST-IG,
a novel multimodal framework for multiple ST slice integration, by cross-modal
visual-genomic guidance and multi ST-slices Contrastive Learning to balance
over- and under-mixing. (2) We developed a Visual-Genomic Graph Optimal
Transport module that effectively aligns histology image and ST. By utilizing
knowledge from visual priors at both the node level and the graph topology
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level, this visual-genomic alignment prevents over-mixing during ST integration,
which helps preserve biological patterns more accurately, thus resulting in im-
proved performance for downstream applications. (3) State-of-the-art (SOTA)
performance across cancer grading and tissue clustering tasks with absolute im-
provements up to 0.183 (in ARI of prostate cancer grading) over previous best
methods. Our MoST-IG successfully preserves biological patterns, both demon-
strating discriminative separation of cells while removing technical variations
and mapping identical cell types from different slices together.
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Fig. 1. MoST-IG: A Visual-Genomic framework to learn multi ST-Slices integrated
representation for downstream Tasks (cancer grading and tissue clustering). The frame-
work processes multi ST-Slices (gene expression matrices + spatial coordinates) via
GAT to generate integrated representations, enhanced by: VG-GOT (purple), mST-
CL (blue), and Batch-Uniform Discriminator (green).

2 Method

We present MoST-IG (Fig. , an innovative multimodal framework designed to
learn biologically relevant, spatially aware representations across multiple ST-
Slices. It maintains biological diversity while removing technical biases, facilitat-
ing the integration of various ST-Slices and enhancing spatial domain identifi-
cation. Unlike previous methods, MoST-IG incorporates morphology knowledge
to guide the ST integration process. Specifically, MoST-IG consists of two main
components: 1) genomic integration of multi ST-slices via Contrastive Learning,
and 2) Visual-Genomic alignment between histological morphology guidance and
the corresponding ST data.
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2.1 Multi ST-slices Contrastive Learning

To integrate the genomic expression from different ST slices, we propose a multi
ST-slices Contrastive Learning (mST-CL) module. In this stage, we process
multi ST-slices, including gene expression matrices X € RYX% (where N is
the number of spots and d; is the number of genes) and spatial coordinates C' €
RN*2 through a Graph Attention Network (GAT) based encoder Ey. Then, the
core integration is driven by two complementary triplet losses. For inter-slice
integration, we construct cross-slice triplets using mutual nearest neighbors
(MNNGs) J5]: given anchor spot 2 in slice A, we identify its positive MNN z2

pos

in slice B based on transcriptomic similarity, and sample a negative spot Jsﬁeg

from A. The inter-slice triplet loss minimizes the embedding distance between
anchors and cross-slice positives while maximizing the separation of intra-slice
negatives. With d(-) as Euclidean distance, z = Ey(x) and v representing the
margin, the inter-slice loss can be denoted as follows:

Linter = max (d(zfne, 25) — d(zfe, 21 g) +7,0) . (1)

anc?) “pos anc’

For intra-slice disentanglement, we design an intra-slice loss enhances bio-
logical heterogeneity within individual slices:

Lintra = Z max (d(2i, 2nn) — d(2i, Zneg) +7,0) , (2)
z;,€X
where z,, denotes the nearest transcriptomic neighbor in the same slice and
Zneg denotes a randomly sampled negative example. Additionally, to unify the
latent space for the integrated embeddings and encourage spots to be indistin-
guishable across K slices, we use a pre-trained MLP discriminator D, through
KL divergence minimization:

Lomit = Dicr <D¢(z)||l/{ @)) , 3)

where U represents the uniform distribution over slices.

2.2 Visual-Genomic Graph Optimal Transport

To achieve morphology semantic enrichment and guided regularization, we de-
signed a Visual-Genomic Graph Optimal Transport (VG-GOT) module, which
aligns visual histological patterns with genomic transcriptomic profiles.

Modality-specific Graph Construction. For each pair of co-registered H&E
and ST slices, we construct modality-specific graphs in the feature space: the
Histology Graph G, based on morphology features, and the Gene Expression
Graph G, based on spot features. The morphology features are extracted from
H&E patches using UNI [12], while the spot features are obtained from the GAT-
based encoder designed for ST representation learning. An edge is built between
two nodes (j,7’) in a same graph if the cosine similarity between node features
cos(vj,v;) > T, where threshold 7, = min(cos) + 0.1(max(cos) — min(cos)) is
dynamically constructed [13].
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Two-level Alignment via VG-GOT. We first match the spot distributions
of H&E py and gene expression embeddings pg through optimal transport at
the node level. Denoting T € Rf *N as the transport plan, we can minimize
the Wasserstein Distance (WD) between distributions pg and pg by finding the
optimal transport plan:

~ ~ . H G
‘CWD(pHapG) = H%nz ZTJ,W . C(Uj 7Um)7 (4)

J m

such that 37, Tjm = 1/Ng,Vm and 3, Tjn = 1/Ny,Vj. The cost between
H&E-gene embeddings C’(vf ,v%) is computed with the cosine distance met-
ric. In addition to the node level matching with Ly p, we also wish to fully
grasp neighbor information in morphology by graph topology level align-
ment. Specifically, we enforce structural consistency between visual-genomic
graphs through Gromov-Wasserstein distance, matching the graph topology by
comparing the edge distance between paired visual-genomic graphs. Denoting
T, € Rf *N as the transport plan as before:

Lewp(pm,pe) =min Y TjuTjmw - lle(vf,off) = e(of,vi)l), (5)

J»3"sm,m/
such that T and c are same as equation
Lcor = Mowp + (1 = N)Lewp, (6)

where A\ denotes a weighting term. This two-level mechanism ensures that matched
spots not only have similar feature representations but also maintain consistent
topological relationships within their respective modal graphs, aligning both lo-
cal and global structural patterns across visual-genomic modalities.

3 Experimental Results

3.1 Experimental Settings

Datasets and Tasks. We evaluate our framework on four publicly available ST
datasets, including two cancer tissue datasets and two healthy tissue datasets:
Prostate Cancer [14]: Comprises 7 ST slices from a Gleason 4+3 (ISUP grade
group 4) patient, featuring heterogeneous tumor grading distributions. Annota-
tions include three cancer grades (GG1, GG2, GG/) and normal regions. This
dataset presents challenges in resolving spatial tumor heterogeneity across mul-
tiple tissue sections. HER2-positive Breast Tumors [I5]: Includes eight man-
ually annotated tissue slices from eight independent patients. Each slice is anno-
tated with three regions: carcinoma in situ, invasive cancer; and normal region.
Human DLPFC [I6]: Comprises four dorsolateral prefrontal cortex (DLPFC)
slices from one donor. Annotations include six cortical layers (Layer 1-6) and
white matter (WM). Mouse Sagittal Brain [I7]: Includes four sagittal brain
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slices from two tissue sections (anterior and posterior slices per section). We
evaluate two tasks on the above datasets: Cancer Grading/Detection: For
cancer datasets, we aim to distinguish subtle molecular differences between adja-
cent cancer grades/subtypes within and across slices. Tissue Structure Clus-
tering: For healthy tissue datasets, the objective is to recover anatomically
meaningful regions (e.g., cortical layers, WM) through unsupervised clustering.

Evaluation Metrics. To assess both intra-slice discrimination and cross-slice
integration, we employ three metrics: Adjusted Rand Index (ARI) [Ig],
quantifying cluster-label agreement (€ [—1,1]), where 1 indicates perfect align-
ment with manual annotated labels. ARI evaluates global clustering accuracy.
cell-type local inverse Simpson’s Index (cLISI) [19], assessing local neigh-
borhood purity (€ [1, Neeiitype]). Optimal integration achieves cLISI ~ 1, indi-
cating that at least 50% of spots have neighborhoods containing only spots with
the same label. ASWiy e, representing batch-corrected clustering of identical
labeled spots across slices (€ [0, 1] after rescaling). Higher values indicate that
1) identical-label distances are minimized across slices, and 2) different-label
distances are maximized. This directly evaluates cross-slice integration quality.

Experimental details. Our method maintains excellent scalability. During
training, we run VG-GOT on a random mini-batch of 2,048 nodes each epoch;
during inference, OT is not recomputed. With this strategy, the large dataset
(> 20K spots) is trained in 10 mins, and uses only 3 GB of VRAM during
test, far faster than SPIRAL [§] (several hours) and without the out-of-memory
failures encountered by DeepST [7].

3.2 Comparison with State-of-the-art Methods

We comprehensively evaluate MoST-IG against four ST clustering methods:
SpaGCN [20], DeepST [7], STAligner [6], and SPIRAL [8]. As demonstrated
in Table [I] and Table [2] , our method achieves superior performance across all
evaluation metrics (ARI, cLISI, and ASWyype) on both cancer grading/detection
and healthy tissue structure clustering tasks.

Cancer Grading/Detection. For cancer grading/detection tasks (Table ,
SpaGCN exhibits the lowest performance (Prostate ARI: 0.023, Breast ARI:
0.080) due to its single-slice design, which fails to address the multi-slice scenario.
In contrast, integration-focused methods, SPIRAL and STAligner, achieve im-
proved performance. Specifically, STAligner enhances cell-type separation through
triplet contrastive learning (Prostate cLISI: 1.03 vs. SPIRAL’s 1.06), while SPI-
RAL demonstrates superior cross-slice integration via optimal transport align-
ment (Breast ASWiype: 49.03% vs. STAligner’s 48.13%). DeepST further out-
performs these methods by leveraging histology images, which encode spatial
organization and biological semantics. However, its performance on the Prostate
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Table 1. Cancer grading/detection results on two cancer tissue datasets.

Methods Mor. Prostate Cancer Breast cancer
ARI  cLISI ASWiye(%)|  ARI cLIST ASWyype(%)
SpaGCN v 0.023 1.28 44.56 0.080 1.73 45.87
DeepST [7] v 0.044 1.06 47.68 0.181 1.50 49.83
STAligner lﬁl X 0.192 1.03 48.12 0.163 1.56 48.13
SPIRAL [§] X 0.047 1.06 47.77 0.141 1.62 49.03
Ours v 0.37511.00] 50.50 1 0.226 7 1.41] 50.85 1
w/o Mor. X 0.171  1.04 48.53 ‘().170(—0.()56) 1.52 48.67
(a) DLPFC Tissue Clustering (b) Prostate Cancer Grading
Ours STAligner
Lable ARI=07 ARI=0.6
; § . Ours ﬂ"ligner
g : 2 £ Lable
3 i o GG1
. . GG2
o GG4
Lable e normal
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Fig.2. (a) DLPFC clustering results comparison with STAligner. Ours provides a
more continuous clustering of thin cortical layers (e.g., orange layer 1) compared to
STAligner, thus higher ARI (clustering accuracy). (b) Prostate cancer grading results
comparison with STAligner. UMAP visualization of learned representation: Ours illus-
trates clear separation consistent with labels (e.g., GG2-orange points vs. GG4-green
points), while STAligner wrongly over-mixes different labeled spots.

dataset is suboptimal, as the dataset is too large for DeepST’s processing pipeline,
which follows a single-slice strategy. H&E staining plays a crucial role in clini-
cal cancer diagnosis, providing important guidance for grading. Guided by this
histological morphology prior, MoST-IG achieves significant performance im-
provements (Prostate ARI: 0.375, with a +0.183 increase; Breast ARI: 0.226,
with a +0.045 increase). The UMAP visualization in Fig. 2fb) illustrates the
clear separation of labeled spots after integration using our method. In contrast,
STAligner fails to distinguish heterogeneity between adjacent cancer grades (e.g.,
GG2-orange points vs. GG4-green points) due to over-mixing, further demon-
strating the effectiveness of our approach.

Healthy Tissue Structure Clustering. For healthy tissue clustering tasks
(Table 7 SpaGCN;, lacking an integration module, exhibits suboptimal per-
formance. On consecutive DLPFC slices, which are anatomically similar but
contain subtle cortical layer heterogeneity, STAligner achieves superior perfor-
mance (ARI: 0.607, cLISI: 1.17), benefiting from its effective separation mod-
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Table 2. Tissue structure clustering results on two healthy tissue datasets.

Methods Mor. DLPFC Mouse Brain Sagittal
ARI  cLISI ASWiype(%)|  ARI cLIST ASWiype(%)

SpaGCN [20] v  0.313  2.68 39.73 0.145 1.42 27.81
DeepST [7] v 0.555 1.23 57.40 0.380 1.06 52.58
STAligner [6] X  0.607 1.17 55.64 0.369 1.26 52.42
SPIRAL [§] X 0.508 1.52 53.35 0.385 1.06 53.92
Ours v/ 0.63511.09| 57.541 0.4011 1.04| 54.391

w /o Mor. X 0569 1.14 57.43  ]0.373(-0.028) 1.23 52.95

ule based on Triplet Contrastive Learning. In contrast, SPIRAL performs bet-
ter on anatomically distinct (anterior/posterior) Mouse Brain Sagittal sections
(ARI: 0.385, ASWiype: 53.92%), leveraging robust Optimal Transport for cross-
slice mapping. DeepST achieves intermediate performance between these two
approaches (DLPFC ARI: 0.555, Sagittal ARI: 0.380), indicating that incor-
porating H&E morphological information can enhance clustering to a certain
extent. Our method establishes new state-of-the-art performance across all sce-
narios, achieving the highest clustering accuracy (DLPFC ARI: 0.635, Sagittal
ARI: 0.401). The clustering visualization (Fig. 2(a)) compares our method with
STAligner on DLPFC. Our approach provides a clearer and more continuous rep-
resentation of thin cortical layers compared to STAligner, particularly in distin-
guishing layer 1 (orange layer) from layer 2 (green layer), further demonstrating
its effectiveness.

3.3 Ablation Study

To assess the effectiveness of our morphology-guided approach, we perform ab-
lation studies by removing histological morphology guidance (w/o Mor) and
report the results in the last row of Table [I] and Table [2| The absence of mor-
phology guidance leads to a significant performance drop in both cancer grad-
ing/detection (up to a 0.204 decrease in ARI for prostate cancer grading) and
tissue structure clustering (up to a 0.066 decrease in ARI for DLPFC clustering).
These results highlight the critical role of morphological information in captur-
ing essential pathological features for cancer grading/detection and in preserving
spatial patterns for tissue clustering. Furthermore, we observe that the perfor-
mance degradation is more pronounced in cancer-related tasks, emphasizing the
importance of morphological priors in improving accuracy for cancer diagnosis
and classification.

4 Conclusion

In this study, we propose MoST-IG, a novel multimodal framework for inte-
grating ST across multiple slices. By combining multi ST-slices contrastive inte-
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gration and visual-genomic Graph optimal transport alignment, MoST-IG effec-
tively integrates multi ST-slices and balance under- and over-mixing, mapping
identical cell types from different slices together while preserving biological het-
erogeneity. The learned representation is robust for downstream ST analyses,
thereby enhancing the reliability and accuracy of biological tasks.
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