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Abstract. Recently, large language models (LLMs) have been increas-
ingly utilized for decision support across various domains. However, due
to their probabilistic nature and diverse learning influences, LLMs can
sometimes generate inaccurate or fabricated information, a phenomenon
known as “hallucination”. This issue is particularly problematic in fields
like medical diagnosis, where accuracy is crucial and the margin for er-
ror is minimal. The risk of hallucination is exacerbated when patient
data are incomplete or vary across different clinical departments. Con-
sequently, using LLMs directly for clinical decision support presents sig-
nificant challenges. In this paper, we introduce ProCDS, a system that
integrates Prolog-based rule diagnostics with LLMs to enhance the pre-
cision of clinical decision support. ProCDS begins by converting medical
protocols into a set of rules and patient information into facts. Then, we
design an update cycle to extract and update related facts and rules due
to possible discrepancies and missing patient information. After that,
we perform a logical inference using the Prolog engine and acquire the
response. If the Prolog engine cannot produce certain results, ProCDS
would perform another iteration of facts and rules update to fix the
potential mismatch and perform logical inference again. Through this
iterative neuro-symbolic integrated process, ProCDS can perform trans-
parent and accurate clinical decision support. We evaluated ProCDS in
Obstructive Sleep Apnea Hypopnea Syndrome (OSAHS) real-world clin-
ical scenarios and other logical reasoning benchmarks, achieving high
accuracy and reliability in our results. Our project page is available at:
https://github.com /testlbin/procds.
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1 Introduction
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Fig. 1. The workflow overview of our proposed ProCDS framework.

Recent advancements in large language models (LLMs) have facilitated their
widespread adoption as general assistants for various daily tasks [29]. Due to their
robust reasoning capabilities and fluent interaction with natural language, LLMs
are increasingly deployed in specialized professional fields, including finance and
healthcare [I38]. In these domains, they offer targeted knowledge services and
support for professional decision-making. However, the application of LLMs in
such contexts, which have little tolerance for inaccuracies, is challenged by the
propensity of these models to generate false information—a phenomenon com-
monly referred to as “hallucination” [I1I]. This issue underscores the need for
enhanced LLM reliability in high-stakes environments.

Hallucination is a well-recognized issue in utilizing LLMs, stemming primar-
ily from their probabilistic model’s nature. These models are inherently prone to
sampling incorrect tokens within different sampling algorithms [30], which can
lead to compounded errors in their logical reasoning processes. Factors such as
noise in the pre-training corpus, the usage of datasets with potentially incor-
rect instructions for fine-tuning, and imbalanced data distribution can further
exacerbate hallucinations. Additionally, the input context can influence model
generations, increasing the likelihood of hallucination due to either insufficient
information or the inclusion of irrelevant data [I0]. This issue is particularly
prevalent in clinical domains, where patient records often vary sig-
nificantly across different departments [11I]. Consequently, employing
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LLMs for reliable and trustworthy clinical decision support presents
substantial challenges.

Recently, several studies have explored the use of neural-symbolic frame-
works to address the problem of hallucinations in LLMs. These approaches in-
volve converting natural language logical reasoning tasks into executable code,
which can be processed by logical engines or code interpreters [27126]. This trans-
formation allows LLMs to generate accurate results based on logical engine-
generated specific outputs, significantly reducing instances of hallucination in
reasoning processes. However, this process heavily relies on prompt engineering
and domain-specific knowledge to consistently translate natural language inputs
into executable code. It often necessitates the explicit coding of key informa-
tion to enable efficient inference [25]. Consequently, these frameworks face
substantial challenges in real-world clinical decision support scenar-
ios, where patient information varies and may require diverse logical
inference pathways for each individual.

Hence, is it feasible to develop a clinical decision support framework that
incorporates adaptive logical reasoning based on diverse patient data? In this pa-
per, we propose a novel framework, ProCDSﬂ which leverages Prolog-driven,
rule-based diagnostics using LLMs for robust and interpretable Clinical Decision
Support. The ProCDS framework begins by transforming medical protocols into
a structured set of rules and converting patient data into factual inputs. It in-
cludes a dynamic update cycle to refine and expand these rules and facts, ad-
dressing any discrepancies or gaps in the patient data. Logical inference is then
performed using a Prolog engine to generate diagnostic outcomes that strictly
follow medical protocols. If the initial inference cycle does not yield definitive
results, ProCDS iteratively updates the facts and rules, resolving mismatches
and repeating the reasoning process. This neuro-symbolic integration enables
ProCDS to offer transparent and precise clinical decision support. To fully eval-
uate ProCDS, we validated it in real-world OSAHS diagnostic scenarios and
across open-source logical reasoning benchmarks to demonstrate its versatility.
Our results show high accuracy and reliability. The key contributions of this
work include:

— We propose a novel framework ProCDS, which adaptively refines rules and
facts based on feedback from the Prolog engine to enhance both reasoning
adaptability and accuracy.

— We implement ProCDS in a real clinical OSAHS diagnosis scenario, where
it achieves superior diagnosis performance at the level of trained clinicians
without performing task-specific prompt engineering.

— We also evaluate ProCDS across various open-source logical reasoning bench-
marks, illustrating its adaptability and robustness across various reasoning
domains.

— Our proposed ProCDS framework is constructed and evaluated based on the
open-sourced LLMs for easy replication.

4 The code is available at https://github.com /testlbin/procds.
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2 Methods

2.1 Preliminary and Related Works

Instructions Following of Large Language Models There are several strate-
gies to guide LLMs in generating specific outputs. In-context Learning (ICL) [24]
uses example pairs (x;,y;) to prompt pre-trained base models (pg), enabling
few-shot learning for structured outputs. Techniques like supervised fine-tuning
(SFT) |20] and reinforcement learning from human feedback (RLHF) [4] refine
these models’ ability to follow instructions by fine-tuning them on diverse tasks,
resulting in an updated model (pg) that better adheres to instructions. The
Chain-of-Thought (CoT) technique [22] enhances logical reasoning by guiding
models through multi-step problems, improving accuracy and response detail.
However, these methods don’t always mitigate hallucination or ensure reasoning
accuracy, especially in sensitive domains. Studies [I431] report that reasoning
steps ¢ in CoT can be disorganized, failing to follow a structured logic sequence,
which limits model performance. Additionally, missing information in few-shot
demonstrations and inaccurate instructional data can worsen hallucinations in
LLMs [LT13].

Neural-symbolic Framework with Prolog Logical Engine The integra-
tion of neural-symbolic frameworks has led to notable improvements in mathe-
matical and reasoning tasks [I2J27]. By incorporating logical engines like Prolog,
LLMs can derive logical inferences that enhance output accuracy. Prolog [0] is a
symbolic language system designed for rule-based reasoning within Horn Clause
logic [3]. It uses a declarative programming paradigm, where computation logic
is expressed through facts set F and rules set R. Prolog’s core reasoning relies on
unification and backtracking. Unification matches predicate values by substitut-
ing variables, while backtracking allows Prolog to explore alternative solutions by
revisiting previous steps. Typically, Prolog performs depth-first search to iden-
tify viable inference paths but can also enumerate all possible paths leading to
the target results set 7. In medical decision support, such as OSAHS diagnosis,
T can be clearly defined. However, variability in electronic health records (EHR)
and diagnostic protocols complicates the creation of applicable rules R and facts
F, which are essential for building effective neural-symbolic systems for clinical
support.

2.2 ProCDS

The proposed ProCDS contains two stages of processing to achieve the adaptive
logical reasoning process using a logical engine with LLMs. Initially, the LLM ex-
tracts medical protocols and patient information, translating these into a struc-
tured format of rules and facts. This structured information is then enriched by
aggregating additional related facts and rules, ensuring a comprehensive dataset
for the logical engine. In the second stage, this information is transformed into
executable code suitable for inference by the logical engine. Should the logical
engine fail to provide valid results, the LLM iteratively refines and updates the
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information by generating supplement and revised rules and facts, thus filling
in any gaps in the data for logical engine inference. The overview of ProCDS is
shown in the Figure [I]

Stage 1: Rules and Facts Sets Extraction In the initial phase, we deploy
an open-source LLMs, pg, characterized by parameters §. Our goal is to facilitate
rule-based diagnosis for OSAHS by first collating the medical guidelines r which
include the gold-standard diagnostic criteria and associated rules for OSAHS.
Subsequently, we collect the patient’s EHR x, which may vary across several
dimensions and might be incomplete due to recording errors.

To begin, we design an initial extraction prompt, Prompt, ; , to systemati-
cally extract a potential set of rules R; and facts F; from r and x through:

Ri, Fr ~ pgl-[Prompt, ;(x,1)]. (1)

To enhance the adaptability of the system and ensure the sufficiency of ref-
erence rules and facts for subsequent logical inference, a second round of fact
and rule augmentation is conducted. Using a modified prompt, Prompt, ,;, we
generate an additional set of rules Rg and facts Fg for supplementary purpose:

RSa]:S Npé_['|Pr0mptrirf<XaraRIa]:f)]' (2>

Initially, we limit the process to a single iteration of fact and rule enhancement
as delineated in Equation [2]

Stage 2: Iterative Neuro-Symbolic Integration In the second phase,
the sets of rules Rg and facts Fg are translated into Prolog code, facilitating
logical reasoning within the inference engine. Upon evaluating the performance
of the model pz used, it was demonstrated to effectively and accurately convert
these rules and facts into executable Prolog code under a specifically designed
prompt, Prompt p:

Rp,Fp ~ pgl|Promptp(Rs, Fs)], (3)

where Rp and Fp denote the Prolog-compatible rules and facts. Given the
inference target 7, which in this case involves diagnosing specific levels of OS-
AHS in clinical decision support scenarios, the Prolog engine generates reasoning
outcomes:

O = Prolog(Rp, Fp, T), (4)

where O represents the set of results, including reasoning trajectories.

Considering the variability in patient information and the potential for in-
complete EHR data, Rg and Fg may not always provide sufficient evidence for
definitive Prolog inferences. Therefore, a dynamic update process for rules and
facts is instituted whenever errors are identified in O@. This update mechanism is
facilitated through another prompt, Prompt;;, which refines the generated rules
and facts:

Ru, Fu ~ pg[-|Prompty (Rp, Fp, Rs, Fs)] (5)
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subsequently leading to a renewed logical reasoning cycle with the updated Pro-
log code:
Oy = PrOIOg(RUv Fu, T) (6)

This iterative refinement process can be continuously implemented until Oy
yields error-free and reliable clinical decision support. However, in practical ap-
plications, even a single iterative update can substantially enhance the accuracy
of the logical engine’s inferences.

OSAHS Proofwriter GSMS8K
Model Accuracy Accuracy Accuracy
No Mask Mask  Keywords Mask Accuracy  Accuracy
BERT 92.18 86.46 81.11 - -
PubMedBERT 89.94 77.22 79.72 - -
Clinical BERT 90.78 81.67 83.61 - -
BioGPT 91.06 85.83 85.28 - -
GatorTron 91.34 88.06 83.89 - -
GPT-3.5-Turbo 85.18 79.18 82.30 30.92 41.11
with CoT 82.58 82.80 84.14 49.70 65.56
ProCDS (GPT3.5) 99.55 85.14 91.65 78.55 70.74
ProCDS (Llama3)  99.49 91.43 95.32 63.55 68.51

Table 1. Main experimental results ProCDS. The best results are marked in bold.

3 Experiment

3.1 Experimental Details

Experiment Setup We utilize Llama3-8B-Instruct [I] for ProCDS implementa-
tion. Inference is performed using the vLLM framework with Temperature=0.2,
Top-p=1, and a maximum token limit of 2048 for controlled sampling. For log-
ical symbolic reasoning, we employ the Prolog programming language with the
SWI-Prolog inference engine [23]. We develop a symbolic solver using the pyswilﬂ
package to enable reliable batch-scale inference.

OSAHS Dataset Prior studies [I7J2I] demonstrate strong correlations be-
tween symptom severity and patient characteristics. We analyzed a de-identified
dataset of 1,797 patients, approved by the Ethics Committee of the Eye &
ENT Hospital of Fudan University (No.2022140). All data were anonymized
and comply with privacy standards. Based on literature-derived indicators [I5],
we established 14 expert-validated rules to classify patients as high-risk (mod-
erate/severe) or low-risk (normal/mild). Patients satisfying three or more rules
are classified as high-risk.

General Datasets: To assess ProCDS general reasoning capability, we em-
ployed two benchmarks:

5 https://github.com/yuce/pyswip
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Accuracy Accuracy Correction
Model Dataset (Before Verify) (After Verify) Rate
No Mask 98.99 99.55 83.33 (12 — 2)
Mask 80.63 85.14 47.09 (172 — 91)
ProCDS (GPT3.5) Keywords Mask 89.81 91.65 73.33 (45 — 12)
ProofWriter 73.20 78.55 53.26 (199 — 93)
GSMSK 68.52 70.74 28.13 (32 — 23)
No Mask 99.38 99.49 25.00 (8 — 6)
Mask 84.86 91.43 61.95 (205 — 78)
ProCDS (Llama3) Keywords Mask 92.93 95.32 93.75 (48 — 3)
ProofWriter 56.45 63.55 29.66 (372 — 230)
GSMSK 59.25 68.51 68.42 (57 — 18)

Table 2. After the Stage 2 error correction, the results of ProCDS. (A — B),
marked in bold, indicates the correction from A errors to B errors (CorrectionRate =
eTTOTcorrect | €TTOTtotal )-

— ProofWriter: The ProofWriter dataset [19] challenges models with logical
reasoning tasks, presenting premises and a hypothesis to verify in English.
The task outcome can be classified as True, False, or Unknown, depending on
the logical consistency with given facts and rules. The dataset is segmented
into subsets by maximum proof depth. For our purposes, we engaged with
the most demanding subset, allowing proof depths of < 5, which comprises
482 rule sets and 2,000 randomly associated problems.

— GSMBS8K: The GSMS8K dataset [5] serves as a benchmark for assessing and
training models on mathematical reasoning skills. It features 8,000 problems
suitable for grade-school level, spanning a diverse array of mathematical
topics and problem types. We specifically utilized a subset of 270 anno-
tated problems from this dataset [18] to evaluate the reasoning capability of
ProCDS.

These benchmarks require multi-step logical and numerical reasoning capabil-
ities that are directly analogous to real-world clinical decision-making processes,
such as dosage calculations and rule-based differential diagnosis.

Baselines: To rigorously evaluate ProCDS efficacy, we employed various
NLP models for patient risk classification. Note that models like BERT[7] are
not designed for direct logical reasoning, making them unsuitable for ProofWriter
and GSM-8K benchmarks. The baseline models are as follows:

— BERT-based Models: BERT[7]: Pre-trained transformer encoder fine-
tuned for text classification tasks. PubMedBERT [9]: BERT variant trained
from scratch on PubMed literature. ClinicalBERT[2]: BERT pre-trained
on electronic health records for clinical text understanding. GatorTron|28]:
Large-scale BERT-based model specialized in clinical data and medical ter-
minology.
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— LLMs: BioGPT[I6]: Generative model trained on biomedical literature for
domain-specific text generation. GPT-3.5-Turbo: Evaluated for direct infer-
ence, Chain-of-Thought reasoning, and framework integration.

Prompting Strategies: To assess the reasoning capabilities of LLMs under
different prompt settings, we employed two prompting strategies widely used in
LLM-based inference:

— Direct Inference: Generates outputs without additional reasoning con-
straints.

— Chain-of-Thought|22]: Enhances complex reasoning through structured,
step-by-step logical prompting.

3.2 Experimental Results

To evaluate ProCDS robustness under real-world data incompleteness, we sim-
ulated three conditions:

— No Mask: Original complete data.

— Random Mask 10%: Randomly selecting 10% of patients and masking
2 information pieces for each selected patient to simulate missing informa-
tion commonly observed in real-world EHRs. This setting tests the model’s
robustness against incomplete inputs.

— Keywords Mask 10%: Masking critical keywords (e.g., BMI, weight) that
influence >3 diagnostic rules for 10% of patients. Keywords were identified
by three clinicians through consensus following clinical guidelines.

As shown in Table[ll ProCDS achieves superior performance across all mask-
ing scenarios. In the No Mask condition, ProCDS attained 99.49% accuracy
for OSAHS clinical decision support. Notably, GPT-3.5-Turbo’s performance
improved significantly when integrated with our framework, surpassing tradi-
tional methods like BERT and CoT. On ProofWriter and GSM8K datasets,
ProCDS demonstrated comparable or superior performance to standalone GPT-
3.5-Turbo, indicating effective generalization to common reasoning tasks.

Error Correction The verification process substantially enhanced model
performance across all scenarios (Table . GPT-3.5-Turbo reduced error cases
by an average of 57%, demonstrating strong analytical capabilities in logical
reasoning tasks. ProCDS exhibited superior error correction in both clinical and
mathematical reasoning domains.

4 Conclusion

In this paper, we introduce a novel neural-symbolic framework, ProCDS, de-
signed to enhance clinical decision support using LLMs. Our framework ad-
dresses challenges related to missing information and the dynamic generation
of facts and rules necessary for effective logical reasoning within a logical en-
gine in Prolog. The ProCDS framework operates through a two-stage process
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by gathering possible rules and facts from provided information and iteratively
refining the facts and rules based on the feedback from the logical engine. We
have validated ProCDS using real-world scenarios, including the diagnosis of
OSAHS, to verify its effectiveness in clinical decision support. Additionally, we
tested ProCDS on open-source logical reasoning benchmarks to demonstrate its
adaptability across various reasoning domains. The adaptability of ProCDS is
particularly valuable for reasoning tasks requiring the processing of diverse and
flexible natural language inputs from different individuals.
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