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Abstract. Left ventricular (LV) indicator measurements following clinical echo-
cardiography guidelines are important for diagnosing cardiovascular disease. Alt-
hough existing algorithms have explored automated LV quantification, they can 
struggle to capture generic visual representations due to the normally small train-
ing datasets. Therefore, it is necessary to introduce vision foundational models 
(VFM) with abundant knowledge. However, VFMs represented by the segment 
anything model (SAM) are usually suitable for segmentation but incapable of 
identifying key anatomical points, which are critical in LV indicator measure-
ments. In this paper, we propose a novel framework named AutoSAME, combin-
ing the powerful visual understanding of SAM with segmentation and landmark 
localization tasks simultaneously. Consequently, the framework mimics the op-
eration of cardiac sonographers, achieving LV indicator measurements consistent 
with clinical guidelines. We further present filtered cross-branch attention 
(FCBA) in AutoSAME, which leverages relatively comprehensive features in the 
segmentation to enhance the heatmap regression (HR) of key points from the 
frequency domain perspective, optimizing the visual representation learned by 
the latter. Moreover, we propose spatial-guided prompt alignment (SGPA) to au-
tomatically generate prompt embeddings guided by spatial properties of LV, 
thereby improving the accuracy of dense predictions by prior spatial knowledge. 
The extensive experiments on an echocardiography dataset demonstrate the effi-
ciency of each design and the superiority of our AutoSAME in LV segmentation, 
landmark localization, and indicator measurements. The code will be available at 
https://github.com/QC-LIU-1997/AutoSAME. 
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1 Introduction 

2D echocardiography plays an important role in the measurements of left ventricular 
(LV) indicators, which facilitate the diagnosis of cardiovascular diseases [1, 2]. At pre-
sent, most echocardiography societies recommend the biplane Simpson’s method to 
compute LV indicators, such as the end-diastolic length (EDL) and end-systolic length 
(ESL) of the LV long axis, end-diastolic volume (EDV), end-systolic volume (ESV), 
and ejection fraction (EF), i.e., the difference between EDV and ESV as the percentage 
of EDV [3, 4]. As shown in Fig. 1, cardiac sonographers need to segment the LV cavity 
from the frames at apical 4-chamber (A4C) and apical 2-chamber (A2C) views, deter-
mine the long-axis according to the midpoint of the mitral annulus and the apex, then 
calculate the volume as the sum of a series of parallel slices from apex to base. By 
strictly following the procedure in the clinical guidelines, clinicians can obtain accurate 
and reliable quantification results, providing assessments of LV function. 

 
Fig. 1. Left ventricular indicators measurements by the biplane Simpson’s method. 

Many studies have developed automated echocardiography analysis methods to re-
lease cardiac sonographers from the laborious work [5, 6], such as numerical regression 
of LV indices [7, 8], segmentation of LV contours [9-11], and the location of myocar-
dial points [12]. Although deep learning has shown promising results in LV indicator 
assessments, most existing models are limited by small training data. As a result, it is 
difficult for algorithms to gain abundant knowledge about general visual representation, 
hindering further improvement of the LV quantitative performance.  

The emerging visual foundation models [13, 14] revolutionized the computer vision 
field, providing potential solutions to break through the bottleneck. As a representative, 
the segment anything model (SAM) [15] learns the concept of various objects from 
numerous images, showing powerful segmentation capacity through simple prompting.  
Based on SAM, AutoSAMUS [16] designs a parallel CNN branch, a cross-branch at-
tention (CBA) mechanism, and an auto prompt generator (APG), introducing an end-
to-end universal model tailored for ultrasound image segmentation. However, Au-
toSAMUS is mainly oriented to segmentation, which cannot meet the needs of LV in-
dicator measurements in clinical practice. Specifically, after completing LV segmenta-
tion, the model has difficulty in directly determining the position of the apex landmark 
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and the mitral annulus from the masks, and then further calculating LV parameters with 
the biplane Simpson’s method recommended by the guidelines.  

 
Fig. 2.  Comparison of (a) SAM, (b) AutoSAMUS, and (c) our AutoSAME. The improvements 
made by our framework are highlighted in red. By combining SAM’s powerful visual under-
standing with the segmentation and landmark detection task, AutoSAME achieves LV indicators 
quantification from paired end-diastolic (ED) and end-systolic frames (ES) at A4C and A2C 
views. 

Hence, we propose a novel framework named AutoSAME (where E represents 
Echocardiography) to imitate cardiac sonographers to complete LV indicator measure-
ments. Firstly, AutoSAME designs two trainable CNN branches with APGs to capture 
task-specific representations for segmentation versus heatmap regression (HR). Com-
bining the powerful visual understanding of SAM with distinct tasks, AutoSAME de-
lineates the LV contour and locates the key anatomical points simultaneously, quanti-
fying the LV with the biplane Simpson’s method, as clinical guidelines recommend. 
Secondly, we advance filtered cross-branch attention (FCBA) to decouple segmen-
tation features in the frequency domain and then extend them from the image encoder 
to the HR CNN branch, providing beneficial information for the HR task. In segmen-
tation, global and local features are often fused to capture the overall scene, e.g., the 
position relationship between different cardiac chambers, and to perceive edges and 
textures, such as the boundaries of the myocardium. In contrast, HR tasks typically 
focus on the approximate region of the key points, which may be beneficial in commu-
nication with the segmentation task. Thus, we present FCBA for the adaptive interac-
tion between features from the image encoder with different frequency components and 
features extracted by the HR CNN branch. Thirdly, we introduce the spatial-guided 
prompt alignment (SGPA), which enhances the reliability and robustness of the gen-
erated embeddings by the introduction of prior spatial knowledge. When the coordi-
nates of key anatomical points are projected as embeddings in the prompt encoder, the 
mask decoder can find shortcuts and output near-perfect landmark localization results. 
With the prompt encoder as an intermediary, SGPA encourages embeddings from 
APGs to be consistent with those projected by the prompt encoder based on LV char-
acteristics, improving the quality of APG-generated results. 

Our contributions are summarized as follows: 1) For the first time, our novel AutoS-
AME marries SAM with LV indicators measurements according to clinical guidelines. 
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2) The advanced FCBA adaptively integrates knowledge from segmentation features to 
HR features with a frequency perspective, encouraging the latter to receive more com-
prehensive information. 3) We propose SGPA to generate task-specific prompt embed-
dings that are more consistent with prior spatial knowledge, improving the performance 
of LV quantification in an end-to-end manner.  

2 Method 

2.1 AutoSAME 

Architecture Overview. Fig. 2 (c) illustrates our AutoSAME, which aims to marry 
SAM to left ventricular indicator measurements consistent with clinical guidelines by 
leveraging its visual comprehension ability in both segmentation and HR tasks. The 
core components of SAM, i.e., image encoder, prompt encoder, and mask decoder, are 
preserved to leverage the extensive knowledge accumulated from massive natural im-
ages. Referring to the success of SAMUS, we employ position and feature adapters in 
the image encoder to facilitate the model generalization for echocardiographic analysis 
and utilize a CNN branch with CBA to supplement local information and an APG to 
generate prompt embeddings for the segmentation tasks. On this basis, we further in-
troduce the HR CNN branch, HR APG, FCBA and SGPA, which will be detailed be-
low. 

Innovations for Distinct Tasks. We develop a CNN branch and an APG for landmark 
localization tasks and present FCBA and SGPA to optimize the visual representation 
according to the task properties. Since the features extracted by the SAMUS may not 
be reused for HR tasks, it is necessary to make particular designs to capture features 
closely related to key point locations in HR, deriving the design of the HR CNN branch 
with APG. Furthermore, an advanced FCBA transfers multi-level knowledge from the 
image encoder to the HR CNN branch, while the SGPA imposes constraints on the 
APG to generate results consistent with the embeddings from the prompt encoder and 
corresponding to the LV external box or coordinates of key anatomical points, ulti-
mately improving the predictions from the mask decoder.  

Training and Inference. The inputs of AutoSAME are paired images of A2C and A4C 
views, including ED and ES frames. Total loss for training is the combination of Dice 
loss for segmentation, MSE loss for HR, and an alignment loss for SGPA, which will 
be described in Section 2.3. During inference, the prompt encoder can be completely 
replaced by SGPA-optimized APG. Moreover, once segmentation masks and coordi-
nates of key anatomical points (the apex point 𝑃𝑃𝐴𝐴, left endpoint 𝑃𝑃𝐿𝐿, and right endpoint 
𝑃𝑃𝑅𝑅 of the mitral annulus) are obtained, LV indicator measurements can be performed 
automatically according to clinical guidelines without manual intervention, as depicted 
in Fig. 1. 



 Think as Cardiac Sonographers 5 

2.2 Filtered Cross-Branch Attention 

The filtered cross-branch attention (FCBA) realizes the interaction between HR CNN 
features and image encoder features with different frequency components, dynamically 
promoting the HR CNN branch to integrate comprehensive knowledge from the image 
encoder. Since the segmentation naturally drives the model to learn relatively compre-
hensive features, such as global anatomical structure and local texture details, the ex-
pansion of image encoder features can help HR CNN to adaptively select valuable in-
formation, improving the learned visual representations from a frequency perspective. 

 
Fig. 3. The design of (a) FCBA, which promotes the HR CNN branch to dynamically integrate 
comprehensive knowledge from the image encoder with a frequency domain perspective; and (b) 
SGPA (take HR branch as the example), which encourages APG to calibrate the generated 
prompt with spatial prior knowledge of LV with the assistance of prompt encoder outputs. 

Fig. 3 (a) details how FCBA optimizes the HR CNN feature with a frequency domain 
perspective. For a pair of feature maps from the image encoder branch 𝐹𝐹𝐼𝐼𝐼𝐼 ∈ 𝑹𝑹𝑐𝑐×ℎ×𝑤𝑤 
and the HR CNN branch 𝐹𝐹𝐻𝐻𝐻𝐻 ∈ 𝑹𝑹𝑐𝑐×ℎ×𝑤𝑤, we first apply a fast Fourier transform (FFT) 
to 𝐹𝐹𝐼𝐼𝐼𝐼 and convert it to the spectrum 𝐹𝐹𝑠𝑠. Thereafter, to preserve the specific patterns in 
𝐹𝐹𝐼𝐼𝐼𝐼 corresponding to the grayscale distribution and local texture details, we use low-
pass mask 𝑀𝑀𝐿𝐿 and high-pass mask 𝑀𝑀𝐻𝐻 to filter the 𝐹𝐹𝑠𝑠. The masks are defined as follows:  
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after the filtering operation, the feature 𝐹𝐹𝐿𝐿𝐿𝐿 and 𝐹𝐹𝐻𝐻𝐻𝐻, according to the low and high fre-
quency components of 𝐹𝐹𝐼𝐼𝐼𝐼, can be obtained by inverse FFT (IFFT). We employ the 
learnable matrix 𝑊𝑊𝑄𝑄 to construct the query by the projective transformation of 𝐹𝐹𝐻𝐻𝐻𝐻 and 
utilize 𝑊𝑊𝐾𝐾 and 𝑊𝑊𝑉𝑉 to generate the key-value pairs for both 𝐹𝐹𝐿𝐿𝐿𝐿 and 𝐹𝐹𝐻𝐻𝐻𝐻. Then, cross-
attentions are adopted for 𝐹𝐹𝐻𝐻𝐻𝐻  to selectively choose beneficial information from 𝐹𝐹𝐿𝐿𝐿𝐿 
and 𝐹𝐹𝐻𝐻𝐻𝐻, improving the HR CNN branch’s perception ability of the LV shape contours 
and details around anatomical points in echocardiography. Finally, FCBA executes an 
adaptive summation through a learnable parameter 𝛼𝛼 to get the tuned HR CNN feature 
𝐹𝐹𝑇𝑇𝑇𝑇𝑇𝑇, dynamically fusing knowledge of frequency-related patterns for better localiza-
tions. 
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2.3 Spatial-Guided Prompt Alignment 

The spatial-guided prompt alignment (SGPA) encourages the embeddings generated by 
the APG to be close to those generated by the prompt encoder based on landmarks and 
boxes, thereby compensating for the deficiency of APG in exploiting knowledge of LV 
shape and position, leveraging prior spatial knowledge to improve the reliability and 
robustness of embeddings.  

The way SGPA utilizes spatial prior knowledge to align the prompt embedding is 
illustrated in Fig. 3(b). Among them, HR APG can automatically generate prompt em-
bedding 𝐸𝐸𝐴𝐴𝐴𝐴𝐴𝐴 from the image embedding of the image encoder, the frozen mask token 
in the mask decoder, and a learnable task token. Meanwhile, the frozen prompt encoder 
maps the coordinates of key anatomical points to be searched in the LV into embedding 
𝐸𝐸𝑃𝑃𝑃𝑃 . Then, we employ the cosine similarity as the alignment loss to push the 𝐸𝐸𝐴𝐴𝐴𝐴𝐴𝐴 
closer to the 𝐸𝐸𝑃𝑃𝑃𝑃: 

𝐿𝐿𝐴𝐴 = 1 − cos(𝐸𝐸𝐴𝐴𝐴𝐴𝐴𝐴 ,𝐸𝐸𝑃𝑃𝑃𝑃) , (3) 
where cos represents calculating the cosine of the angle between vectors. SGPA in the 
segmentation task is identical to that on the HR task, except that the key anatomical 
points of the input are replaced with the outer bounding box of the LV mask.  

3 Experiments and Results 

3.1 Experimental Settings 

Dataset and Evaluation Metrics. We evaluate our proposed method on the publicly 
available CAMUS dataset [6], which contains 500 cases with both ED and ES frames 
at A2C and A4C views. The dataset has provided a manual segmentation mask of the 
left ventricle, and we further label each image with the location of the apex and two 
endpoints of the mitral annulus. Model performance is validated with a 10-fold dataset 
setting (8:1:1 for training, validation and testing), and 5 LV evaluation metrics, i.e. the 
correlation of EDL, ESL, EDV, ESV, and EF, are included. Besides, we employ the 
Dice coefficient (DC) and percentage of correct key points (PCK) to quantify the results 
of segmentation and HR separately. 

Implementation Details. We run all experiments with Python 3.9 and Pytorch 1.8 en-
vironment on an NVIDIA 3090 GPU. Each batch contains 4 images, which are resized 
to 256 pixels, and then transformed by random rotation, center cropping, and random 
perspective as augmentation. Adam is employed as the optimization function with a 
peak learning rate of 0.0002. The epochs are set to 60, where the first 10 epochs undergo 
a linear warm-up, and the rest is in the cosine decay. The weight ratio of Dice loss to 
MSE loss is 1:20, and the weight of alignment loss is 1 and is only added in the warm-
up phase based on experimental observation. In addition, the standard deviation of the 
Gaussian heatmap has an initial value of 20 pixels and gradually attenuates to 10 pixels 
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after the warm-up. Additionally, it is noticed that the prompts are no longer needed in 
testing of AutoSAME. 

3.2 Ablation study 

Table 1. The ablation studies validate the effectiveness of the proposed modules in our frame-
work. Compared with the baseline, our AutoSAME improves the prediction of all five LV met-
rics, such as a 4.3% increase on EFcorr. 

Methods FCBA SGPA EDLcorr ESLcorr EDVcorr ESVcorr EFcorr 
Baseline(AutoSAMUS)   0.898 0.877 0.949 0.951 0.784 

 √  0.926 0.914 0.959 0.958 0.796 
  √ 0.912 0.869 0.956 0.953 0.795 

AutoSAME (Ours) √ √ 0.941 0.912 0.961 0.964 0.827 

As tabulated in Table 1, the ablation study results present the effectiveness of each 
component in AutoSAME for LV indicator measurements compared with the baseline, 
i.e., AutoSAMUS extended with an HR branch using CBA. FCBA brings a gain of 
0.7% to 3.7% to the correlation coefficients of the five LV indicators, which proves the 
efficacy of information interaction between different branches from the frequency do-
main perspective. Similarly, the measurement accuracies of the majority of indicators 
are improved with the introduction of SGPA, implying the positive importance of in-
corporating prior spatial information into prompt embedding. Moreover, our AutoS-
AME achieves the best results on most indicators, especially outperforming other set-
tings by at least 3% on the EFcorr. Besides, the DC of all methods is in the range of 
0.927 to 0.929 with subtle differences, while the application of FCBA or SGPA alone 
improves the PCK (with 1/20 of the input size as the threshold) from 0.928 at the base-
line to 0.937 or 0.938, and the combination of the two will bring a gain of 2 percentage 
points to 0.948.  

3.3 Comparison with State-of-the-Art Methods 

To demonstrate the powerful ability of our framework, in addition to AutoSAMUS, we 
benchmark the AutoSAME against 7 other state-of-the-art methods across 3 categories, 
including (1) a multi-task deep learning network for both segmentation and landmark 
detection tasks named EchoEFNet [17]; (2) four generic vision backbone, as 
DeepLabV3+ [18], TransUNet [19], SwinUNet [20], and U-Mamba [21]; (3) two pre-
trained foundation models tailored for ultrasound image analysis and further fine-tuned 
on CAMUS, DeblurringMIM [22] and USFM [23]. 

As shown in Table 2, the proposed AutoSAME gains the best performance compared 
to all other methods. Moreover, some comparison methods close to AutoSAME on in-
dividual metrics are dwarfed by our framework on others. For instance, EchoEFNet, 
which is closest to AutoSAME on EDVcorr, misses our framework by 1.9% to 10.5% 
on other correlation metrics. Due to the careful design of FCBA and SGPA, AutoSAME 
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successfully combines SAM’s powerful visual understanding ability with both segmen-
tation and HR tasks, showing comprehensive superiority in LV indicator measure-
ments. 

Table 2. The quantitative evaluation demonstrates the powerful ability of AutoSAME in seg-
mentation, HR and LV indicator measurements. Our method achieves the best performance on 
all metrics compared with 7 popular end-to-end methods. 

Methods DC PCK EDLcorr ESLcorr EDVcorr ESVcorr EFcorr 
EchoEFNet[17] 0.912 0.928 0.899 0.887 0.948 0.933 0.726 

DeepLabV3+[18] 0.904 0.917 0.866 0.830 0.912 0.881 0.619 
TransUNet[19] 0.898 0.843 0.697 0.793 0.921 0.925 0.667 
SwinUNet[20] 0.917 0.935 0.929 0.888 0.959 0.942 0.810 
U-Mamba[21] 0.911 0.902 0.864 0.835 0.942 0.939 0.814 

DeblurringMIM[22] 0.918 0.943 0.937 0.873 0.942 0.924 0.722 
USFM[23] 0.905 0.915 0.881 0.876 0.933 0.930 0.664 

AutoSAME (Ours) 0.928 0.948 0.941 0.912 0.961 0.964 0.827 
 

Visualizations in Fig. 4 further explain that our AutoSAME outperforms all other 
methods in both segmenting LV contours and locating key anatomical points. On the 
one hand, benefiting from the strong SAM backbone, our framework suppresses false-
positive segmentation mask predictions. On the other hand, the designed FCBA and 
SGPA extend diverse knowledge to HR tasks to locate the locations of different ana-
tomical points with minimal errors, while most other methods will deviate from the 
ground truth at the apex. Moreover, LV landmarks and boundaries predicted by AutoS-
AME can be verifiable mutually. Consequently, our framework is able to quantify the 
LV indicators accurately from precise segmentation and HR results. 

 
Fig. 4. The visualizations explain our AutoSAME’s superiority in segmentation and HR com-
pared with 7 methods. Red and green represent the predictions and the ground truth. 

4 Conclusion 

In this paper, we propose AutoSAME, which combines the powerful visual understand-
ing of SAM with both segmentation and landmark localization tasks, achieving the end-
to-end LV indicator measurement in a manner consistent with clinical guidelines. Our 
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framework also creatively consists of (1) FCBA, which optimizes the visual represen-
tation for landmark localization by integrating comprehensive knowledge from seg-
mentation into HR from a frequency perspective; (2) SGPA, which guides the genera-
tion of prompt embeddings by prior spatial knowledge. Extensive experiments with 
promising results reveal the great clinical potential of our method. In the future, we plan 
to develop a human-in-the-loop system that applies clinicians’ expertise to correct Au-
toSAME intermediate segmentation and HR results, completing a more efficient and 
reliable echocardiography analysis process. 
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