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Abstract. Polyp segmentation is the foundation of colonoscopic lesion
screening, diagnosis, and therapy. However, the data size of images and
annotations is limited. The latent diffusion model (LDM) has emerged
as a powerful tool in synthesizing high-quality medical images with low
computational costs. However, the challenges of boundary-aligned image-
mask pairs and image realism remain unresolved, showing that (i) the
spatial relationship between the boundaries is easily distorted in the la-
tent space; (ii) the diversity of colors, shapes, and textures, along with
low boundary contrast and textures similar to surrounding tissue, makes
boundary distinction of the polyps difficult. This paper proposes Polyp-
LDM that encodes polyps and masks into the same latent space via a
unified variational autoencoder (VAE) to align their boundaries. Fur-
thermore, Polyp-LDM refines texture and lighting while preserving the
structure by fine-tuning the VAE decoder with data augmentation and
applying the style cloning module to enhance image realism. Quantita-
tive evaluations and user preference study demonstrate that our method
outperforms existing methods in image-mask pair generation. Moreover,
segmentation models trained with augmented data generated by polyp-
LDM achieve the best performance on three public polyp datasets. The
code is available at https://github.com/16rq/Polyp-LDM.

Keywords: diffusion model · paired images generation · boundary align-
ment · polyp segmentation.
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w/o realism-enhanced module
Synthetic images of polyp-LDM

Accurate position;
Aligned boundaries;
Fake lighting, textures, etc.

Synthetic images of LDM

Accurate position;
Not fully aligned boundaries;
Fake lighting, textures, etc.

(b) (c)

with realism-enhanced module
Synthetic images of polyp-LDM

Accurate position;
Aligned boundaries;
Realistic lighting, textures, etc.
 (d)

Real images

Accurate position;
Aligned boundaries;
Realistic lighting, textures, etc.
 (a)

Fig. 1. Comparison of synthetic results in LDM, polyp-LDM without and with realism-
enhanced module and real images. Red curves sketch synthetic boundary masks.

1 Introduction

Colonic polyp segmentation is crucial in screening, diagnosis, and therapy in
clinical endoscopy, as the polyps are lesions closely associated with colorectal
cancer (CRC) [5]. In recent years, deep learning has been extensively applied
to polyp segmentation [6, 19]. However, their effectiveness is still limited by the
scarcity of data and annotations, primarily due to privacy concerns and the high
cost of manual labeling [11]. Although traditional data augmentation techniques,
such as rotation and flipping, could, to some extent, help expand the dataset.
These methods are limited in their ability to scale datasets and increase diversity.

Recently, diffusion models (DMs) have emerged as powerful generative mod-
els for producing high-quality and diverse images [18]. DMs have been applied
to augment medical image datasets like skin lesions and chest X-rays [15]. The
models have also been used to generate more challenging labeled data, such as
polyp images and breast MRI with masks [12, 7]. The strength of DMs lies in
their stochastic process that generates multiple predictions over multiple time
steps. This potential allows them to capture the ambiguous boundaries of polyps,
which has been confirmed by several DM-based segmentation models [21, 20].

However, several challenges remain in generating boundary-aligned and real-
istic polyp-mask pairs. First, existing generative methods often fail to precisely
align the boundaries between the generated masks and polyps, as illustrated
in Fig. 1(b). In this aspect, current techniques, such as latent diffusion models
(LDM), can generate polyps with accurate locations but misaligned boundaries.
Misalignment will significantly affect the performance of the downstream tasks.
Second, traditional generative models often do not take into account the funda-
mental variations in lighting, color, and texture of endoscopic images. Fig. 1(b)
illustrates that the synthetic polyp images do not exhibit realistic lighting, tex-
ture, and other details. As a result, the generated polyp images may fail to
capture the complexity of real-world scenarios and lose realism.

In this paper, we propose an LDM-based model, Polyp-LDM, to ensure
boundary alignment and realism enhancement of generated polyp image-mask
pairs in colonoscopy. First, we introduce a novel sampling scheme grounded
in a unified latent space to strengthen the spatial relationship between polyps
and masks. Specifically, we train a shared Variational Autoencoder (VAE) that
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maps polyp images and masks from pixel space to a unified latent space. During
sampling, we generate polyp image-mask pairs from the shared initial noise to
guarantee precise boundary alignment. This approach effectively preserves the
structural coherence of the polyp-mask relationship and realizes more accurate
generation. Second, we enhance the realism of generated images by leveraging the
full potential of VAE decoder. Specifically, we fine-tune the VAE decoder by ad-
justing the visual attributes of the polyp and background to simulate lighting and
contrast variations. This approach ensures realistic image reconstructions that
are closer to real-world scenarios. In post-processing, style cloning is integrated
into the pipeline to enhance image realism while preserving polyp structure.

2 Methods

In this section, we first introduce the basic image-mask pair generation model,
extended by LDM. Then, we describe the novel extensions in Polyp-LDM that
tackle the problem of boundary misalignment and lack of realism.

(a)  The construction of the shared latent space and decoder-specific fine-tuning
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Fig. 2. The overview of polyp-LDM. (a) The two-stage VAE fine-tuning strategy en-
ables precise polyp and mask reconstruction in a unified latent space. The decoder
is refined to enhance realism by correcting color, brightness, and contrast. (b) The
synthetic masks are first generated and followed by polyp generation conditioned on
masks. Both generators start from shared initial noise. (c) Style cloning incorporates
real-world features into synthetic polyps by modifying the self-attention layers.

2.1 Basic Paired Polyp Image-Mask Generation Model

The basic LDM includes a perceptual compression model VAE and a U-Net de-
noiser. The VAE consists of an encoder E that encodes an image x ∈ R3×256×256



4 R. Qiu et al.

in pixel space into a latent representation z = E(x) ∈ R4×32×32 and a decoder
D that reconstructs the image x̃ = D(z) = D(E(x)). A modified U-Net denoiser
ϵθ generates the latent embeddings and performs diffusion process in the latent
space. Two separate LDMs, each with its own VAE and U-Net denoiser, are used
to generate polyp image–mask pairs. In the polyp generator, the synthetic mask
m acts as an additional condition Em(m) to guide polyp generation by channel
concatenation. The fused features are fed into the U-Net backbone ϵθx to gen-
erate x. Two generators both incorporate a text prompt y via a text embedder
τθ and cross-attention in U-Net denoiser ϵθm . The prompt specifies the desired
number of polyps in the images.

2.2 Boundary Alignment via Unified Latent Space and Shared
Initial Noise

Spatial relationships between image and mask are easily distorted during com-
pression, decoding, and diffusion in latent space, resulting in imprecise bound-
ary alignment. Two strategies are proposed to improve the alignment. First, the
polyp and mask are mapped to the unified latent space using a shared VAE
with an encoder Eu and a decoder Du. This unified VAE learns the features of
the image and mask while preserving their boundary relationship during recon-
struction. To build the unified latent space, we fine-tune the pre-trained Stable
Diffusion VAE (SD-VAE) [18] with full parameter fine-tuning, as illustrated in
Fig. 2(a). By fine-tuning, we adapt SD-VAE into a perceptual model that en-
ables more accurate reconstruction of polyp and mask images. Based on this
shared VAE, we train the UNet denoisers ϵθm and ϵθx for mask m and polyp x,
respectively. As shown in Fig. 2(b), the synthetic mask and its corresponding
initial noise are passed to the polyp generator as conditions and starting points
during sampling. This strategy enables the generation of polyp image-mask pairs
from the shared initial noise in the unified VAE, thereby improving boundary
alignment. Accordingly, the objective could be formulated as:

Lmask := EEu(m),y,ϵ∼N (0,1),t

[
∥ϵ− ϵθm(ct, t, τθ(y))∥22

]
(1)

Lpolyp := EEu(x),Eu(m),y,ϵ∼N (0,1),t

[
∥ϵ− ϵθx(zt ⊕ Eu(m), t, τθ(y))∥22

]
(2)

where c and z are masks and polyps in the latent space. Eu is the encoder of the
unified VAE. τθ is the text embedder. t denotes the time steps.

2.3 Realism Enhancement via Augmented Fine-tuning and Style
Cloning

Endoscopic images exhibit special lighting, contrast, and texture features due to
the single-light source, tubular imaging scenario, and structure of the intestinal
inner surface. Image realism is particularly important for clinical endoscopic
applications. We fine-tune the SD-VAE decoder and use style cloning to enhance
image realism. During fine-tuning, we introduce more variations in lighting and
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color to further exploit the generative potential of SD-VAE. We separate the
polyp from its background to independently adjust its brightness and contrast,
while still requiring the model to restore the original appearance. This strategy
corrects artifacts in generated images, a departure from conventional whole-
image transforms. The objective applied to the augmented image x̂ is a variant
of the VAE loss used in LDM [18], and is defined as:

LD := min
D

max
Dψ

(Lrec(x,D(E(x̂)))− Ladv(D(E(x̂))) + logDψ(x) + Lreg(x̂; E ,D))

(3)
where x̂ = f(x, α, β). f is the augmentation function, x is the original polyp
image, and α and β control brightness and contrast (each with 0.5 probability).
Lrec is the reconstruction loss, Ladv is the adversarial loss, Lreg is the regular-
ization loss, and Dψ the discriminator with parameters ψ.

During post-processing, the synthetic and real polyp noises are first obtained
via DDIM inversion. Then, the texture and style of real polyps are injected by
modifying self-attention layers during diffusion, as illustrated in Fig. 2(c). The
self-attention mechanism is modified as follows:

Q̃t = α ·Qsynt + (1− α) ·Qt, Kt = Kreal
t , Vt = V realt (4)

where Q̃t means the mixed query from queries of synthetic polyp representation
Qsynt and Qt itself at time step t. Kt and Vt are directly replaced with key Kreal

t

and value V realt of the real polyp representation. α is the preservation ratio.

3 Experiments and Results

3.1 Dataset and Preprocessing

The experiments were conducted on five public datasets containing polyp image-
mask pairs, namely Kvasir-SEG (1,000 pairs) [10], PolypGen (1,537 pairs) [1],
CVC-ClinicDB (601 pairs) [2], HyperKvasir (1000 pairs) [4], and CVC-ColonDB
(380 pairs) [3]. The training set comprised data from Kvasir-SEG and five centers
(C1, C3, C4, C5, and C6) in PolypGen. CVC-ClinicDB was utilized as the val-
idation set. The C2 (301 pairs) of PolypGen, HyperKvasir, and CVC-ColonDB
were used as test sets to evaluate the performance of polyp segmentation.

In data preprocessing, all images were resized to 256×256 through scaling and
random cropping. In VAE decoder fine-tuning, data augmentation was applied by
independently adjusting the brightness and contrast of the foreground (polyps)
and background with a probability of 0.5.

3.2 Implementation Details and Evaluation Metrics

We implemented the proposed polyp-LDM and the compared methods in Py-
Torch using an NVIDIA RTX 3090 GPU. Specifically, polyp-LDM was trained
for 1000 epochs using default settings. The downstream segmentation tasks were
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Fig. 3. Visual comparison of polyp-LDM with other mask-conditional image generation
methods. The masks guide polyp generation. Red curves sketch the expected boundary.
Although consistent masks across methods are unachievable as not all methods use real
masks for polyp generation, we have minimized mask variability in specific conditions.

Table 1. Qualitative evaluation and average user preference of the synthetic images.
The bolded values indicate the best and the underlined values the second-best.

Configuration Qualitative evaluation User study
Dice(m, ms)↑ FID↓ CLIP-FID↓ KID↓ CMMD↓ Quality↑ Mask Fidelity↑

LDM [18] 44.20 104.07 14.27 0.07 1.31 1.38 1.50
Seg-Diff [13] 58.90 136.96 20.90 0.13 0.80 1.62 1.69

Polyp-DDPM [7] 42.50 163.65 36.46 0.15 2.44 1.60 1.65
w/o realism 67.66 103.85 14.64 0.09 1.40 - -

w/o boundary 42.97 88.18 10.86 0.07 0.71 - -
Ours 79.00 82.92 6.95 0.07 0.58 2.22 2.46

realized using Polyp-PVT [6] through 100-epoch training. The compared meth-
ods were trained using default settings.

Frechet Inception Distance (FID), CLIP-FID [14], Kernel Inception Dis-
tance (KID), and CLIP-enhanced Maximum Mean Discrepancy (CMMD) [9]
are adopted to evaluate the quality of generated images. FID and KID are im-
proved versions that address image resizing and compression [17]. CLIP-FID and
CMMD use CLIP features to measure the distribution distance between real and
synthetic images. Similarly to ControlNet [22], 100 synthetic images generated
by each method were graded by an endoscopist according to the quality of gen-
eration and mask fidelity (1-3 score, lower is worse). To evaluate boundary align-
ment, a classic segmentation model Polyp-PVT [6] was trained on real data to
predict ms for synthetic polyp, and compute Dice(m, ms) with mask guidance
m. In the downstream tasks, Dice and Average Surface Distance (ASD) were
used to assess segmentation performance.
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3.3 Enhanced Boundary Alignment and Realism

Table 1 lists the quantitative evaluations and average user preference on the syn-
thetic images. polyp-LDM significantly improves Dice to 79.00 when compared
with Seg-Diff (58.90) [13] and Polyp-DDPM (42.50) [7]. In the user preference
study, our method attains the highest generative quality score of 2.22 and mask
fidelity score of 2.46, showing significant improvements when compared with
Seg-Diff and Polyp-DDPM.

In the realism study, polyp-LDM demonstrates superior performance in gen-
erating realistic and diverse images, as evidenced by the lowest FID of 82.92,
which outperforms LDM (104.07) [18] and Seg-Diff (136.96) [13]. In addition,
our method performs well with the lowest KID of 0.07, CLIP-FID of 6.95, and
CMMD of 0.58, indicating that our synthetic images contribute to more natural
and convincing visualizations.

Fig. 3 visually compares polyp-LDM with existing mask-conditional gener-
ation models. One can see that the existing methods struggle to align complex
boundaries beyond simple ellipses. Moreover, their lighting, colors, and textures
appear artificial, which may deteriorate their realism. In contrast, our method
achieves precise boundary alignment and generates colors, textures, and lighting
more consistently with real-world scenarios.

3.4 Improvement in Downstream Polyp Segmentation

We explored the impact of synthetic data along with unchanged real data on
downstream polyp segmentation tasks. We trained a classic polyp segmentation
model, Polyp-PVT [6], with synthetic and real data in different ratios denoted as
R, R2S1, R1S1, and R1S2, and R and S denote real and synthetic, respectively.

Table 2 presents the segmentation results of Polyp-PVT trained with different
dataset configurations. In general, the segmentation performance improves sub-
stantially with the introduction of synthetic data. Notably, polyp-LDM achieves
the best performance across all the configurations. Particularly on the HyperK-
vasir dataset, Dice is improved up to 99.09 from 96.90 when adding the synthetic
data to training. In the CVC-ColonDB dataset with R1S1, polyp-LDM is slightly
worse than Seg-Diff in Dice. However, it outperforms the compared methods with
a Dice of 78.34 and an ASD of 21.07 in the R1S2 configuration.

In summary, polyp-LDM maintains stable segmentation performances with-
out degradation, demonstrating that the data generated by our method does not
mislead the learning capacity of the segmentation model.

3.5 Ablation Study

The ablation study was performed by removing the boundary alignment module
(w/o boundary) or the realism-enhanced module (w/o realism). The correspond-
ing results have been integrated into Table 1 and Table 2.

As shown in Table 1, removing the realism-enhanced module deteriorates
the alignment between generated pairs, showing a decrease of Dice from 79.00
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Table 2. Segmentation performance of Polyp-PVT on PolypGen (C2), HyperKvasir,
and CVC-ColonDB. RxSy denotes the training dataset that mixes real-world (R) and
synthetic (S) data in a ratio of x : y, with real data fixed. Bold denotes the best at
each ratio, underline the second-best, and bold underline the best overall.

Dataset Model PolypGen (C2) |HyperKvasir |CVC-ColonDB
Dice↑ ASD↓ Dice↑ ASD↓ Dice↑ ASD↓

R 61.55 51.35 96.90 3.47 74.75 33.09

R2S1

LDM [18] 76.12 20.38 92.69 13.92 75.14 43.79
Seg-Diff [13] 77.23 15.53 95.19 8.48 78.13 28.73

Polyp-DDPM [7] 80.14 14.31 97.64 6.49 75.32 25.92
w/o realism 77.45 17.04 95.71 10.65 77.05 29.80

w/o boundary 77.77 16.61 97.21 6.27 77.16 27.79
Ours 81.58 10.42 99.09 1.65 78.34 21.07

R1S1

LDM [18] 77.77 15.01 96.64 7.35 73.68 28.00
Seg-Diff [13] 79.63 14.69 96.95 4.76 78.09 25.14

Polyp-DDPM [7] 78.71 19.29 95.21 12.53 74.49 34.08
w/o realism 78.63 13.04 98.60 6.06 77.23 28.70

w/o boundary 79.63 11.15 98.16 3.30 73.76 17.99
Ours 81.09 10.64 98.31 3.44 76.29 22.40

R1S2

LDM [18] 80.83 15.00 97.51 6.69 74.30 19.98
Seg-Diff [13] 78.01 15.97 96.87 9.15 73.53 34.46

Polyp-DDPM [7] 81.34 12.78 97.52 6.19 75.39 19.70
w/o realism 78.78 13.27 97.32 7.97 77.54 30.54

w/o boundary 80.20 13.57 97.43 5.59 74.94 21.27
Ours 82.43 10.75 98.47 2.59 77.18 21.55

to 67.66. Furthermore, FID and KID, which evaluate the realism and diversity
of generated images using Inception features, increase from 82.92 to 103.85 and
from 6.95 to 14.64, respectively. Similarly, CLIP-FID and CMMD, based on
CLIP features, also improve with the realism-enhanced module. Table 2 indicates
that the realism-enhanced module improves segmentation performance across all
datasets and training configurations.

On the other hand, removing the boundary alignment module results in poor
alignment in generated image pairs (see Table 1). The Dice drops from 79.00 to
42.97, reflecting a decrease in boundary faithfulness. FID and KID also decrease,
indicating a decline in realism and diversity. Table 1 indicates that w/o boundary
has a less significant impact on realism compared to w/o realism. Similarly,
Table 2 also illustrates the effectiveness of this module in enhancing segmentation
performance across all datasets and training configurations.

4 Conclusion

This paper proposes Polyp-LDM for paired polyp image-mask generation in
colonoscopy. Recently, generative models for complex and critical endoscopic
scenes have drawn significant attention [16, 8]. Our method achieves precise
boundary alignment by unifying the latent spaces and starting points of images
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and masks. The realism of generated polyps is significantly enhanced through
VAE decoder fine-tuning and style cloning. Experiments demonstrate that our
method can generate realistic polyp images with aligned boundaries. The model
also serves as an effective data augmentation tool to improve the performance
of the downstream tasks. This study focuses on the generative capabilities of
diffusion models and their data augmentation potential, without extensive com-
parison to other generative paradigms or conventional augmentation methods.
Future work will extend this method to diverse medical imaging modalities and
downstream tasks to validate its broader applicability, including comprehensive
comparisons with conventional augmentation methods.
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