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Abstract. Accurate prediction of radiation-induced lymphopenia (RIL),
a common complication of radiation therapy (RT), is clinically crucial
for ensuring the safety of cancer treatment. However, accurately pre-
dicting RIL before RT is highly challenging due to the complexity of
immune damage and various input data. In this study, we propose a
novel multimodal learning framework named RadKAM to predict RIL
severity using heterogeneous data, including CT images, dose maps,
and meta-data. The proposed RadKAM leverages a “divide and con-
quer” strategy to learn the multimodal representation and model the
dose-damage relationship for RIL prediction in an end-to-end frame-
work. For the first time, an Attention-driven Kolmogorov-Arnold Fusion
(AKaF) scheme is designed by injecting modality-adaptive attention
into KAN for intra- and inter-modality interactions. Specifically, Rad-
KAM is constructed with Multimodal Interactive AKaF (MI-AKaF) and
Cross-modality Guided AKaF (CG-AKaF) to capture features related to
lymphocyte-related organs, and model the dose-damage relationships by
multimodal feature interactions. By leveraging the advantages of nonlin-
ear representation, RadKAM effectively models the complex interactions
of heterogeneous multimodal data, resulting in a comprehensive repre-
sentation for RIL prediction. Extensive experiments validate the effec-
tiveness of the proposed RadKAM framework, demonstrating its ability
to accurately predict RIL severity through multimodal learning.

Keywords: Radiation-induced Lymphopenia - Multimodal Learning -
Kolmogorov—Arnold Network.

1 Introduction

Accurate prediction of radiation-induced lymphopenia (RIL) before the radia-
tion therapy (RT) is clinically crucial for the safe treatment of nasopharyngeal
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Fig.1. (a) The challenges in automatic RIL prediction. (b) For the first time, the
proposed RadKAM effectively injects modality-adaptive attention into KAN by AKaF
scheme to learn the multimodal feature interactions for complex dose-damage relation-
ship modeling.

carcinoma (NPC) [4,5,17]. RIL, marked by a significant decline in the absolute
lymphocyte count (ALC) after radiation exposure, is a common and typically
unavoidable complication of RT [2]. Research has consistently shown that pa-
tients with head and neck cancers, including NPC, are susceptible to RIL [4, 13].
Importantly, severe RIL has been linked to poorer overall survival, progression-
free survival, and distant metastasis-free survival in patients [4, 10, 15,17].

Predicting RIL for NPC treatment is challenging due to three issues (Fig. 1a):
1) Identifying lymphocyte-related organs at risk (LOARs) [5, 21] without labels.
Accurately identifying LOARs that are particularly sensitive to RIL severity is
critical, however, the ground truth is no consensus in clinical settings. 2) Hetero-
geneous multimodal learning for joint representation. Accurate RIL prediction
often involves multimodal data (CT image, dose maps, meta-data), which exhibit
significant heterogeneity and pose a greater hurdle for the unified representation
of multimodal data. 3) Modeling the complex dose-damage relationship related
to ALC decrease. Several factors such as radiation dose maps, lymphocyte dy-
namics, heterogeneity of tissue response and individual differences, become crit-
ical impediments to ensuring accurate and reliable RIL prediction [2,17, 15, 21].

Although notable progress has been made to predict RT complications [11,
18, 22| and RIL severity [5, 19], there are some drawbacks: 1) Priors bias. Existing
approaches [5, 19] are subject to manual designs involving complex steps and bi-
ased priors. 2) Inefficient multimodal learning. Existing methods are trapped in
inefficient learning of heterogeneous multimodal data, resulting in biased repre-
sentation towards specific modalities. 3) Linear dose-damage relationship. Exist-
ing methods often model the dose-damage relationship with a linear radiobiolog-
ical model or exponential function, struggling with modeling complex, long-term
dependencies of the dose-lymphocyte count relationship.

The Kolmogorov-Arnold Networks (KANs) [9] emerge as a potential alter-
native for modeling complex relationships with nonlinear fitting capabilities. It
stems from the Kolmogorov-Arnold representation theorem, which posits that
any multivariate function can be expressed as a finite composition of univariate
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Fig.2. The RadKAM is a novel “divide and conquer” multimodal learning frame-
work to capture the comprehensive representation of multimodal data (CT image,
dose map, meta-data) for RIL prediction. RadKAM incorporates modality-adaptive
attention into KAN to form two novel components: Multimodal Interactive AKaF
(MI-AKaF) for lymphocyte-related organs-aware features and Cross-modality Guided
AKaF (CG-AKaF) for comprehensive representation in dose-damage relationships.

functions and addition. Although KAN shows promising performance in medical
image representation [3,8, 16|, incorporating KAN into multimodal learning for
RIL prediction presents three challenges: 1) KAN cannot handle the “where”
issue to find which organs or regions are closely related to RIL. 2) Combin-
ing KAN with Transformer suffers from inefficient multimodal learning due to
computation catastrophe and limited modeling of multimodal interactions. 3)
KAN leads to modality-biased learning stemming from serious intrinsic modality
differences (such as CT images and meta-data).

To address the challenges, we proposed RadKAM (Fig. 1b), a novel Attention-
driven Kolmogorov-Arnold Model, to achieve accurate RIL prediction by multi-
modal learning. RadKAM innovatively injects modality-adaptive attention into
KAN by Attention-driven Kolmogorov-Arnold Fusion (AKaF) scheme to learn
the comprehensive representation of CT images, dose maps, and meta-data. This
approach follows the “divide and conquer” multimodal learning strategy to effec-
tively identify the lymphocyte-related organs-aware features, and then integrate
those features into a comprehensive representation for dose-damage relationship
mdeling. Leveraging long-term feature interactions and nonlinear representation
capabilities, RadKAM models the complex relationship between multimodal fea-
tures and ALC decline, enabling accurate and reliable RIL prediction.
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Our main contributions are threefold: 1) For the first time, an effective multi-
modal learning framework RadKAM is proposed to achieve accurate RIL pre-
diction before RT. 2) A novel attention-driven KAN scheme, AKaF, is proposed
by injecting modality-adaptive attention into KAN to learn the inter- and intra-
modality feature interactions in multimodal learning. 3) Two modality-specific
blocks (MI-AKaF and CG-AKaF) are well-designed with the “divide and con-
quer” strategy to develop heterogeneous multimodal data for RIL prediction.

2 RadKAM

RadKAM (Fig. 2) is proposed to learn the comprehensive multimodal represen-
tation for RIL prediction by injecting modality-adaptive attention into KAN.
Conceptually, the core design is the Attention-driven Kolmogorov-Arnold
Fusion (AKaF) scheme, which leverages flexible attention computing to iden-
tify the most related features and KA theorem to model the complex dose-
damage relationships for RIL prediction. RadKAM fuses CT images, dose maps,
and meta-data into a comprehensive multimodal representation for the RIL pre-
diction with the “divide and conquer” multimodal learning strategy, relying on
two specialized AKaF variants: 1) Multimodal Interactive AKaF (MI-AKaF)
to learn the lymphocyte-related organs-aware features for modeling the dose-
LOARs correspondence with image modality data (CT images and dose maps);
2) Cross-modality Guided AKaF (CG-AKaF) to capture the joint representa-
tion incorporating individual data (meta-data) for RIL prediction. Finally, the
representation is passed into a classification layer to predict RIL severity.

2.1 Multimodal Interactive AKaF (MI-AKaF) for
lymphocyte-related organs-aware features

MI-AKaF is designed to capture lymphocyte-related organs-aware features by
modeling the long-term interaction between CT images and dose maps. MI-
AKaF is composed of two modules, Multimodal Interactive Attention (MI-
A) and Self-adaptive Kolmogorov-Arnold Fusion (S-KaF). Given the in-
put CT image feature Fo € R*"*w*d and dose map feature Fp € ReXhxwxd,
position embeddings (PE) [14] is added to get For, Fp € R%*¢, where d, = hwd.
PE allows MI-AKaF to contain richer spatial position information. F¢ and
Fp are inputted into MI-A to identify the most lymphocyte-relevant features
through multimodal attention interaction, and are then passed into S-KaF to
fuse these features into a joint representation. Finally, MI-AKaF performs the
global average pooling (GAP) to fuse the feature channel as E; € R®.
Multimodal Interactive Attention (MI-A, Fig. 2b). The MI-A is a modality-
specific attention computing unit that models both intra- and inter-modal in-
teractions of CT image features and dose map features, thereby enhancing the
comprehensive features of lymphocyte-related organs associated with dose dis-
tribution. Specifically, given the query Q., key K¢, and value V¢ from Fe
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and the query Qp, key Kp, and value Vp from Fp, We can model the long-
term dependencies within and across modalities through attention mechanisms,
thereby deriving enhanced multimodal features X € R%*¢ and X p € R%*¢:

(9082 o (9c82)
Vs Vs

— — Ve
a SD?{(TJ SDID{LT) {VD} @
\va. )\ va.

D—C D—D

{Xc] _ {Ac%c AC%D:| {Vc]
Xp Ap,cAp.p| |Vp

where ¢ is the row-wise softmax activation function. In Eq. 1, MI-A can be
decomposed into four terms for intra- and inter-modal interactions: 1) CT-to-
CT intra-modal interactive attention Ac_,c € R% X% models the global context
association of CT image features to localize key areas; 2) CT-to-Dose inter-
modal interactive attention Ac_,p € R%*% models the response mechanism of
radiation dose distribution guided by CT image features; 3) Dose-to-CT inter-
modal interactive attention Ap_, ¢ € R%*ds models the response mechanism of
key CT image regions guided by dose map features; 4) Dose-to-Dose intra-modal
interactive attention Ap_,p € R%*% models the cumulative effect and spatial
continuity of dose distribution.

Self-adaptive Kolmogorov-Arnold Fusion (S-KaF, Fig. 2c). The S-KaF
is designed to learn a self-adaptive matrix for fusing enhanced CT and dose map
features into a joint representation, by leveraging the nonlinear fitting capabili-
ties of KAN. Specifically, S-KaF first mixes the enhanced features X ¢ and X p
outputted by MI-A to generate the hybrid enhanced feature H € R% *¢:

H = KAN Linear (KAN Linear (X ¢) © KAN Linear (Xp) + X¢ + X p)
(2)
where ® and K AN Linear represent the element-wise multiplication and 1-layer
KAN, respectively. The hybrid enhanced feature is then fed into the MHSA [14]
layer to capture the spatial long-term dependency, resulting in a self-adaptive
matrix for multimodal fusion: H = MHSA (HY®o X¢c+ MHSA(H) ® Xp.
Therefore, lymphocyte-related organs-aware features X p can be expressed as
Xp=KAN (LN (H)) + H.
Summary of Advantages: MI-AKaF is designed by incorporating multimodal
interaction attention with KAN to capture lymphocyte-related organs-aware fea-
tures with CT images and dose maps.

2.2 Cross-modality Guided AKaF (CG-AKaF) for comprehensive
representation in dose-damage relationships

CG-AKaF is specifically designed to bridge the modality gap between image
modalities (CT image and dose map) and meta-data for comprehensive rep-
resentation in the modeling of dose-damage relationships. CG-AKaF enables



6 R. Zhao et al.

Table 1. Modality effectiveness study demonstrates that our RadKAM achieves the
best performance for RIL prediction with three heterogeneous multimodal data (%).

CT Dose Meta AUC(T)  ACC(f)  PRE()  SEN(1) SPE(T) F1(1)
v 72.73%5.67 72.5043.20 67.3213.23 61914456 84.23+3.07 62.24+4.12
v 68.93+4.25 70.1543.20 66.98+14.76 57.24+4.93 81.67+2.14 56.26+6.95
v T0.63+1.92 59.7242.88 56.08+£4.86 51.46+2.92 75.0241.33 51.65+3.91
VR TT.1846.78 77.24+3.67 78.14+5.71 69.2646.66 86.39+3.78 70.73+5.62
v v 81.53£5.72 TT.7342.05 77.2245.08 68.99+3.03 86.4442.28 70.94+2.41
Vv 78.93+£1.94 74.4241.76 80.4845.11 63.66+3.01 83.29+1.98 66.18+2.51
v v v’ 87.32+3.80 83.40+2.47 83.00+3.29 79.11+4.55 90.34+2.56 80.12+2.73

the model to selectively transfer information from image modalities to meta-
data modality through a unidirectional guidance strategy. CG-AKaF consists
of Cross-modality Guided Attention (CGA) and Kolmogorov-Arnold
Fusion (KaF). In CGA, meta-data feature Fj; € R is used as the query
Qs> and the concatenation of F'p; and image modality fusion feature E are
used as key K j; and value V', so that information in two image modalities can
be transferred to meta-data modality. Then, leveraging the MHSA mechanism,
we can get the output Xy € R™:

.
XM:U<Q]‘4\/C%M> Vu+Fy (3)

Then, the comprehensive representation, which considers lymphocyte-related or-
gans, dose-damage relationships, and individual differences, is captured using
KAN as E]u = KAN (LN (XM)) + X]u.

Summary of Advantages: CG-AKaF achieves comprehensive representation
of CT image, dose map and meta-data in modeling of dose-damage relationships.

3 Experiments and Results Analysis

3.1 Experimental Configuration

Dataset and Data Preprocessing. This study includes 211 NPC patients,
including 40 individuals with G2RIL, 114 individuals with G3RIL, and 57 indi-
viduals with G4RIL. The CT images and dose maps, after alignment, removal of
excess parts, resampling, and normalization, have a size of 128 x 128 x 128. The
meta-data comprises gender, age, tumor stage (T-, N-, M-, and overall-stage),
baseline lymphocyte count, and baseline neutrophil count.

Implementation Setup. All experiments are based on Python 3.9, PyTorch
1.13.0, CUDA 11.7, and a single NVIDIA GeForce RTX 3090 GPU. The loss
function for all experiments is the cross-entropy loss. We use a five-fold cross-
validation method to verify the effectiveness of the proposed RadKAM. 80% of
the data is used as a training set and 20% as a test set. The initial learning rate
is set to le-4 and the weight decay of le-5. The decay strategy of the learning
rate is cosine annealing. Training epochs are set to 100. The loss function is
minimized with Adam optimizer.
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Table 2. Ablation studies show that the effectiveness of each components in our Rad-
KAM for RIL prediction (%).

M%CGAK;LF KAN AUC()  ACC(1)  PRE(}) SEN(1) SPE(1) F1(1)
v 75.38+4.02 73.94%3.26 77.49+7.13 61.58+4.72 83.58+3.52 61.74+4 11
v oY v 84124449 80.10+4.29 80.81+5.51 73.18+6.05 87.99+3.78 74.81+5.28
v v 80304536 77.7244.02 79.13+£4.33 69.60+6.71 86.58£3.70 70.99:45.52
v v v 82754314 79.61+3.66 77.63+4.44 71.3946.72 87.69+3.43 72.8146.21
v v v 87.22+4.77 80.56+2.03 79.47+3.15 74.35+2.79 88.46+1.29 75.91+2.76
v oY v 84.3145.28 81.034+2.43 83.11+3.47 75.514+4.55 88.3842.34 77.414+4.08
v Y v v 87.32:+3.80 83.40+2.47 83.00+3.290 79.11+4.55 90.34::2.56 80.12+2.73

3.2 Performance Evaluation and Analysis

Quantitative results (Tab. 1) demonstrate that the proposed RadKAM achieves
remarkable performance in RIL prediction, with an area under the curve (AUC)
of 87.3243.80%, an accuracy (ACC) of 83.40+£2.47%, a precision (PRE) of
83.00+3.29%, a sensitivity (SEN) of 79.11+4.55%, a specificity (SPE) of 90.34
+2.56%, and a Fl-score (F1) of 80.12+2.73%.

Modality Effectiveness Study. Experimental results (Tab. 1) show that Rad-
KAM achieves the best performance of RIL prediction by learning from multi-
modal data together. It also should be noted that RIL severity is most sensi-
tive to modality-aligned feature representation. Benefitting from the proposed
multimodal learning framework, RadKAM understands the patient’s condition
comprehensively to make an accurate RIL prediction by modeling the comple-
mentary mapping relationship between multimodal features and ALC decline.
Ablation Study. To evaluate the effectiveness of each components of our Rad-
KAM, extensive ablation studies are conducted (Tab. 2). 1) Effectiveness of
MI-AKaF: Experimental results indicate that MI-AKaF effectively captures
the lymphocyte-related organs-aware features to advance the RIL prediction.
With the MI-AKaF, a great improvement is achieved with the average AUC,
ACC and F1 of 8.94%, 6.16% and 13.07%, respectively. Furthermore, we dis-
cuss the effectiveness of MI-A and S-KaF in MI-AKaF. The results show that
both MI-A and S-KaF can improve the performance of the network, and the
organic combination of MI-A and S-KaF is beneficial to MI-AKaF to integrate
CT image features and dose map features. 2) Effectiveness of CG-AKaF:
Experimental results indicate that CG-AKaF effectively captures the meta-data
features incorporating radiation damage to advance the RIL prediction. With
the CG-AKaF, a great improvement is achieved with the average AUC, ACC
and F1 of 4.92%, 3.78% and 9.25%,, respectively. 3) Effectiveness of KAN:
To evaluate the effectiveness of KAN’s nonlinear modeling capability in RIL
prediction, we further replace all KANs in RadKAM with MLPs with the same
number of layers. Experimental results show that compared with MLP, KAN
can better model various complex relationships in RIL prediction.
Comparison Experiments. 1) Outperformance of AKaF in multimodal
learning: To evaluate the outperformance of the AKaF in RIL prediction, ex-
tensive experiments are conducted by dividing the multimodal learning into two
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Table 3. Comparison experiments demonstrate the effectiveness of the proposed AKaF
for multimodal learning in RIL prediction (%).

Method
Stage 1 Stage 2 AUC(T) ACC(1) PRE(T) SEN(1) SPE(1) F1(1)

Concat 74.16+2.43 73.9243.04 72.82£10.05 63.32+3.60 84.63£2.53 63.39£4.40

MMTM [6] MLP 79.65+5.80 77.2442.79 77.80+7.47 69.12+5.87 86.59+3.06 70.41+4.77
KAN 80.47+5.08 78.184+3.21 78.58+5.59 70.55+6.76 87.09+3.14 71.95+5.50

Concat 72.844+4.96 73.47+2.50 67.384+4.06 63.44+6.42 84.68+2.58 63.30£5.91

HcCNN [1] MLP 79.67+£3.00 78.19+£2.03 78.84+6.60 70.37+4.34 86.80+3.12 72.35+2.63
KAN 78.194+4.87 77.724+1.41 76.85+5.89 70.90+2.27 86.65+£1.89 72.80+2.47

Concat 73.324£3.37 72.984+2.78 72.144+5.50 61.85+4.85 83.41+£2.54 62.56£5.40

Yang et al. [20] MLP 76.06+4.73 75.724+3.17 80.26+3.66 63.06+4.09 83.41+£2.80 64.68+4.82
KAN 76.45+2.17 76.2943.46 74.71+3.19 67.35+3.94 85.62+3.04 68.46+2.86

Concat 77.56+3.41 75.35+2.77 76.62+5.30 63.35+£3.45 84.03£2.15 65.30+4.21

MDL-Net [12] MLP 80.35+5.04 76.2845.92 T78.824+8.56 64.72+8.45 84.62+4.72 67.16£8.76
KAN 83.914+5.04 77.2244.77 79.97+5.74 T71.47£7.14 86.69£4.10 71.47+6.45

Ours (MI-AkaF) Ours (CG-AkaF) 87.32+3.80 83.40+2.47 83.00+3.29 79.11+4.55 90.34+2.56 80.12+2.73

Table 4. Comparison results of relevant studies (NSCLC: Non-Small Cell Lung Can-
cer, ESC: Esophageal Cancer, HCC: Hepatocellular Carcinoma, NPC: Nasopharyngeal
Carcinom, DVH: Dose-Volume Histogram, and -: Not exist in original paper).

Method Type Data Subjects  AUC(T) ACC(T) PRE(T) SEN(T) SPE(T) F1(T)
Zhu et al. 23]  ESC  DVH;Meta 721 0831 0769 0670 0610 -  0.631
Kim et al. [7] NSCLC DVH;Meta  139(117;22)  0.77 - - - - -
Xuetal [19] NSCLC DVH;Meta  130(87:43)  0.77  0.76 - 076 076 -

Huang et al. [5] NPC CT;Dose;Meta 125(100;25)  0.93 0.88 0.73 0.8 09 0.76
Ours (RadKAM) NPC CT;Dose;Meta 211(40;114;57) 0.873 0.834 0.830 0.791 0.903 0.801

stages: one to learn from CT images and dose maps and another to learn the
comprehensive representation with meta-data and outputs of the first stage. Four
image fusion approaches [6, 1,20, 12] are adopted for stage 1 and Concat, MLP,
vanilla KAN are adopted for stage 2. Results (Tab. 3) demonstrate that the pro-
posed AKaF enables the model to achieve the best performance of multimodal
learning for both heterogeneous meta-data-image and homogeneous image-dose
data. 2) Outperformance of RadKAM for RIL prediction: Comparison
results (Tab. 4) show that the proposed RadKAM achieves the best performance
for RIL prediction on most of the evaluation metrics. It should be noted that
the performance of the RadKAM in terms of AUC, ACC, and SEN is slightly
inferior to the work [5], because there exists a huge difference between this work
and [5] on task definition. Work in [5] only makes a binary classification between
G4RIL and G2-3RIL, while RadKAM is applied to predict RIL with fine-grained
classification of G2RIL, G3RIL and G4RIL. In the approach described in [5],
manual segmentation of regions of interest (ROIs) in CT images is required prior
to RIL prediction. In contrast, RadKAM is an end-to-end multimodal learning
framework that operates without any such prerequisites.

4 Conclusion

In this paper, a newly designed “divide and conquer” multimodal learning frame-
work RadKAM is proposed to achieve accurate radiation-induced lymphope-
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nia (RIL) prediction before nasopharyngeal carcinoma (NPC) radiation therapy
(RT). To the best of our knowledge, this is the first RIL prediction work that
does not require the delineation of the region of interest. RadKAM relys on a
key idea of Attention-driven Kolmogorov-Arnold Fusion (AKaF) for multimodal
learning. Through a series of rigorous experiments, our proposed method in
achieves accurate RIL prediction. The results show that our method holds great
promise in automatically predicting RIL from radiotherapy treatment plans be-
fore treatment and assisting doctors in refining radiotherapy treatment plans.
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