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Abstract. Multimodal large deformation image registration is a chal-
lenging task in medical imaging, primarily due to significant modality
differences and large tissue deformations. Current methods typically em-
ploy dual-branch multiscale pyramid registration networks. However, the
dual-branch structure fails to explicitly enforce that the model learns
modality-invariant image registration features. Furthermore, in the mul-
tiscale registration process, only the deformation field is propagated,
which restricts the model’s capacity to accommodate more complex de-
formations. To enhance the model’s ability to learn features from differ-
ent modalities, we propose a modality representation disentanglement
method, incorporating Multi-layer Contrastive Loss(MCL) to enforce
the learning of modality-invariant features. To address the challenge of
complex large deformations, we introduce a Multi-Scale Feature fusion
Registration module(MSFR), which integrates features and deformation
fields from different scales during the registration process. To explore
the registration potential of the trained model, we propose a Recursive
Inference enhancement strategy that further improves registration per-
formance. This model is referred to as RDMR. Based on experimental
results from both private and public datasets, the RDMR model outper-
forms other SOTA models. Compared to the baseline registration model
(Voxel Morph), the RDMR model achieved improvements of 1.4 and 4.5
percentage points in the DSC metric, respectively. Our code is publicly
available at:https://github.com/ybby2020/RDMR

Keywords: Multimodal deformable registration · Modality-invariant con-
trastive · Recursive inference.

1 Introduction

Aligning (registration) anatomical structures across multimodal medical images
is a fundamental task in medical image analysis. This task has significant im-
plications for clinical applications, including preoperative multimodal diagnosis,
intraoperative image-guided surgical planning, and postoperative efficacy eval-
uation [1,2]. However, multimodal medical image registration faces significant
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challenges due to the inherent differences in imaging mechanisms across modali-
ties. For example, MRI provides high-contrast images of soft tissues, whereas CT
offers high-resolution images of bone structures. These modality-specific charac-
teristics lead to significant discrepancies in intensity distribution profiles across
imaging modalities. Furthermore, additional physiological factors[3] such as pos-
ture changes, respiratory-induced motion introduce complex spatial variations
that frequently result in nonlinear, large-magnitude tissue deformations.

In recent years, deep learning-based deformable registration methods have
achieved remarkable progress[4,5,6,7,8,9,10]. However, current studies predomi-
nantly focus on unimodal registration[12], with insufficient exploration of mul-
timodal registration under large deformations. Current unimodal registration
research addressing large deformations predominantly adopts dual-stream pyra-
mid registration methods[13][14][15]. However, existing approaches exhibit some
limitations that hinder their performance in multimodal large deformation regis-
tration tasks: (1) during the multiscale registration process, only the deformation
field was transmitted, lacking interaction of image features, which leads to a de-
crease in registration accuracy in complex scenarios; (2) the current dual-branch
design cannot ensure that the model learns the intrinsic, modality-invariant fea-
tures of the image.

To address the challenges of large deformations and intensity discrepancies in
multimodal deformable registration. We propose a novel Disentanglement-based
Multimodal Registration model (DMR) and introduce an innovative recursive in-
ference enhancement strategy to further improve model performance (RDMR).
To the best of our knowledge, this is the first work to propose using recursive
inference to enhance performance in multiscale multimodal registration. Exten-
sive experiments on multi-center clinical datasets demonstrate that our model
outperforms state-of-the-art(SOTA) approaches in both qualitative and quanti-
tative evaluations. Specifically, our contributions can be summarized as follows:

(i)Multi-scale Feature Fusion Registration: We design a multiscale feature
interaction module that fuses multiscale features(MSFR), breaking the limita-
tions of conventional multiscale deformation field propagation and significantly
enhancing the model’s capability to perceive complex deformations.

(ii)Disentanglement based on contrastive learning: We propose a novel multi-
layer modality-invariant contrastive loss(MCLoss) to enforce feature distribution
consistency across modalities at different encoder depths, thereby improving
registration performance and model generalization.

(iii)Low Computation Load Enhancement Mechanism: We introduce a recur-
sive inference strategy that boosts performance without retraining the network.
By recursively adjusting the multi-scale modules of the trained model during
inference, we can optimize its final structure with minimal computational over-
head, further enhancing performance.
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2 Method

The architecture of the proposed multimodal deformable registration model is
shown in Fig.1. During the training phase, multimodal data are fed into the dual-
branch feature extraction module to obtain image features at different scales.
Registration starts at the smallest scale, where features from different modalities
at the same scale are input into the MSFR (Multi-Scale Feature Registration)
module, and the process continues until the final deformation field is obtained.
During the inference phase, further improvement of the registration results is
achieved by recursively applying the MSFR module at each scale. The number
of recursions is associated with parameters such as a, b, c, and d in Fig.1.

Fig. 1. Overview of the proposed RDMR architecture.

2.1 Dual-stream Encoding Branch

This module is used for image feature extraction, with the goal of extracting
modality-invariant features to facilitate subsequent multiscale registration. We
use convolutional neural network as the backbone to perform image feature ex-
traction. Since the module is designed to encode images from different modalities,
the weight parameters of the two branches are independent, with each branch en-
coding features for fixed and moving, respectively. The structure of both branch
encoders is identical, and we describe one branch as an example. The encoder
consists of four encoding blocks. The first block primarily increases the feature
channels without changing the image feature dimensions. The following three
encoding blocks have the same structure, as shown in Fig.2(a). These blocks
include convolutional downsampling and convolutional processes (instance nor-
malization and activation functions applied after each convolution). After each
encoding block, the number of channels in the features doubles, while the spatial
dimensions are reduced by half. The output features at each layer are denoted
as F i

m, F i
f for i = 1, . . . , 4.
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2.2 Multi-Scale Feature Registration

The multi-scale deformable registration begins at the smallest scale, and the
registration features and deformation field are propagated to the next scale for
further refinement. The index i denotes the current scale, while i+1 refers to the
previous (coarser) scale. Current multiscale pyramid registration models typi-
cally only propagate the deformation field backward. In this paper, we simul-
taneously propagate the image registration features and the deformation field.
Specifically, we propose MSFR module to handle the input and output of both
registration features and deformation fields.

The MSFR module(Fig.2(b)) receives four inputs: the previous deformation
field ϕi+1 and registration features F i+1

c , the current scale’s moving image fea-
tures F i

m and fixed image features F i
f . The registration features F i+1

c are first
processed by a transposed convolution to adjust dimensions to F̂ i+1

c , while the
moving image features F i

m are warped by the deformation field to obtain F̂ i
m.

Then F̂ i+1
c ,F i

f and F̂ i
m are concatenated and fed into a two-stage image feature

extraction module, which consists of convolutional layers, normalization, and
activation functions, ultimately outputting the registration features F i

c . These
registration features can be directly passed to the next scale, while also be-
ing input into the registration head to predict the deformation field(ϕi) at the
current scale. The output deformation field at each scale is combined with the
previously obtained deformation field. The registration head mainly consists of
convolutional modules and a diffeomorphism layer[27]. The processing flow of
MSFR can be represented by Equation (1).

Fig. 2. (a)Details of the encoder block ar-
chitecture.(b)Details of the MSFR archi-
tecture.

MSFR



F̂ i+1
c = ConvUP (F i+1

c ),

F̂ i
m = warp(F i

m, ϕ̂i+1),

F = concat(F i
f , F̂

i
m, F̂ i+1

c )

F i
c = CConv(F ),

ϕi = RegHead(F i
c ),

i = 3, 2, 1

(1)

where "CConv" denotes a two-layer convolution operation.

2.3 Multi-layer Modality-invariant Contrastive Representation

The major challenge in multimodal registration is the intensity differences be-
tween images. In multiscale deformable registration research, even with dual-
branch encoders, the model is not guaranteed to learn modality-invariant image
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features. To address this issue, we propose a multi-layer modality-invariant con-
trastive loss. We first introduce the design philosophy. For the same patient, even
with images acquired at different times and from different modalities, there tends
to be a higher structural similarity. In contrast, images from different patients or
the same modality across patients exhibit noticeable structural differences. The
fundamental idea behind contrastive learning[16][17] is to establish correlations
between two signals, the ‘query’ and its ‘positive’ example, while contrasting
them with other examples in the dataset, referred to as ‘negatives.’ Therefore,
we propose treating images from the same patient across different modalities as
positive pairs and images from different patients as negative pairs. This approach
helps constrain the model to learn more essential or modality-independent fea-
ture information. Due to the presence of multiple output layers in the encoder
branch, we propose computing the contrastive loss for the feature output at each
layer. In summary, we define the contrastive loss[18] as follows:

L = − log

[
exp(v · v+/τ)

exp(v · v+/τ) +
∑N

n=1 exp(v · v−
n /τ)

]
,LMCL(Ff , Fm) =

L∑
l=1

wlLl

(2)
Here, τ represents a temperature parameter used to scale the distance be-

tween the query and other examples, with a default value of 0.5. (v,v+) rep-
resents positive pairs from the same patient across different modalities. (v,v−

n )
represents the different patients across different modalities are referred to as neg-
ative pairs. l represents the layer index, and wl represents the weight associated
with a specific layer.

2.4 Recursive Inference Optimization

The multi-scale registration model can be viewed as an independent registration
process at each individual scale. By recursively applying the model at each scale,
it mimics traditional iterative optimization methods in registration[19]. In this
paper, we propose that recursive-based architectural refinements can effectively
enhance the performance of pre-trained multi-scale image registration models,
achieving significant improvements with minimal additional computational over-
head. Equation 3 illustrates the computation process.

ϕ = f1
ϕ(f

2
ϕ(f

3
ϕ(f

4
ϕ(F

4
m, F 4

f , ϕ
4)× a, F 3

m, F 3
f )× b, F 2

m, F 2
f )× c, F 1

m, F 1
f )× d (3)

Here, f i
ϕ represents the prediction function for the deformation and registration

features at different scales, while F i
m, F i

f denote the input features at each scale,
and a, b, c, d represent the number of recursions at the corresponding scales. The
values of these four hyperparameters should be determined through inference
testing.

Specially, the four hyperparameters for recursive inference determine the
number of recursions at each scale. We begin with a single recursion per scale
to identify which scale yields the greatest improvement in registration quality.
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We then increment the recursion that scales until no further gains. Unlike tun-
ing learning rates or loss weights, which typically requires retraining, this strat-
egy adjusts recursions post-training, greatly enhancing usability. Dataset-specific
tuning is necessary but easy to perform.

2.5 Loss Function

This paper focuses on unsupervised multi-modal medical image deformable reg-
istration. To measure the similarity between multimodal images, we adopt the
MIND metric[20]. Additionally, we apply a regularization function that imposes
constraints on the gradients of the deformation fields. Finally, we utilize the
proposed MCLoss. Consequently, the overall loss function consists of three com-
ponents.

L(If , Im, ϕ) = λ1LMIND(If , Im ◦ ϕ) + λ2LMCL(Ff , Fm) +
∑
p∈Ω

∥∇ϕ(p)∥2 (4)

where λ1, λ2 are the hyperparameters used to balance the contribution of loss
functions. P represents the image voxel.

3 Experiments

3.1 Datasets and Comparison Methods

The first dataset is a proprietary dataset comprising 3D multimodal MR-CT
liver-paired data(The data has undergone an ethical review). The dataset com-
prised 122 cases: hospital A(HA) included 40 cases, hospital B(HB) included 68
cases, and hospital C(HC) included 14 cases. For model training, we utilized all
data from HA and 60 cases from HB, others were reserved for testing. These
data were resampled to a voxel spacing of 1.75 × 1.75 × 2, then were cropped
to 160 × 160 × 64. The second dataset is the publicly multi-modal dataset
AbdomenCT-1K(AMOS)[21]. We used 30 unpaired but annotated MR and CT,
with 24 MR/CT volumes allocated for training and 6 for testing. Considering
the combination of MR and CT, the actual training data consists of 576 pairs,
with 36 pairs for testing. Additionally, we performed resampling and cropping
on this dataset to ensure consistency in data dimensions.

To evaluate the performance of our proposed model, we compared it with sev-
eral SOTA deformable registration algorithms, including VoxelMorph(VM)[11],
TransMorph(TM)[22], VIT-V-Net[23], LKU-Net[25], RDP[26], and PIVIT[24].
We employed the Dice Similarity Coefficient (DSC) as an evaluation metric.
Furthermore, to assess the plausibility of the deformation fields, we computed
the percentage of voxels with a negative Jacobian determinant((%|Jϕ| ≤ 0),
which indicates local folding within the deformation field. In addition, we also
compared the model’s parameters and inference time.
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3.2 Training Settings

All models are implemented using the pytorch. The model training was per-
formed using an NVIDIA GeForce RTX 3090 GPU and an Intel i9-12900K CPU.
We implement the model using Adam optimizer with a learning rate of 1e−4.
The batch size is set as 4 and the networks are trained for 200 epochs. For the
paired private datasets, λ1 and λ2 were set to 10 and 2, respectively. For the
unpaired AMOS, we relax the weighting of the MCL, λ1 and λ2 were set to 10
and 0, respectively.

Fig. 3. The visualization of the results and the corresponding deformation fields

4 Results

Fig.3 shows the visualization results of different models. The content within the
yellow boxes highlights that our proposed model exhibits a structure more sim-
ilar to the fixed image than other models. The visualization of the deformation
field (second row) shows that our proposed model is capable of producing a wider
range of deformations, particularly in areas corresponding to complex anatom-
ical structures. Table.1 summarizes the comparative results of different models
across three multimodal liver datasets. Our proposed DMR model demonstrates
superior performance on all evaluation metrics compared to baseline methods.
Notably, the RDMR with recursive inference achieves further improvements over
the DMR. In terms of the DSC metric, RDMR achieves the best performance
across all three datasets. Specifically, on the HB dataset, the DSC score improves
by 1.4% relative to the baseline model VM, and on the AMOS dataset, the im-
provement is 4.5%. The proportion of negative Jacobian determinants about
most models remain below 0.1%, indicating most models handle the image fold-
ing problem better.

The models tested on the HC dataset were trained on the HB dataset. From
the metrics in Table.1, it is evident that each model performs worse on the HC
than on the HB, as changes in data distribution can lead to a decline in the
model’s generalization ability. However, our proposed model still achieves the
best performance on the HC dataset, demonstrating that the modality-invariant
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Table 1. Comparison of results from different methods across three datasets.

HB HC AMOS

Model DSC↑ %|Jϕ| ≤ 0↓ DSC↑ %|Jϕ| ≤ 0↓ DSC↑ %|Jϕ| ≤ 0↓ T(S) P(K)

VM 86.6±8.1 <0.03% 85.2±11.1 <0.15% 80.4±5.9 <0.15% 0.04 301.4
VIT-V 86.8±8.2 <0.02% 85.9±12.1 <0.08% 80.5±5.8 <0.16% 0.04 31519.8
TM 86.0±8.1 <0.05% 84.2±13.9 <0.10% 80.1±5.6 <0.16% 0.06 46771.2
LKU 84.3±9.1 <0.001% 78.3±17.4 <0.001% 79.0±5.8 <0.001% 0.03 2087.6

PIVIT 85.9±7.5 <0.001% 85.1±9.1 <0.01% 84.6±5.4 <0.08% 0.02 664.9
RDP 86.9±7.6 <0.001% 85.6±8.2 <0.001% 84.5±5.3 <0.03% 0.08 2240.8

DMR 87.7±8.2 <0.001%1 86.2±8.5 <0.001% 84.7±5.7 <0.05% 0.07 1904.2
RDMR 88.0±8.0 <0.001% 87.0±11.3 <0.001% 84.9±5.8 <0.04% 0.08 1904.2

constraints enable the model to focus on the essential information in the images.
This also indicates that our method helps mitigate the model generalization
issues caused by multi-center data shift. From the structural perspective, models
that employ a multi-scale registration strategy, such as PIVIT, RDP, DMR,
and RDMR tend to achieve better results when addressing large deformation
registration problems. The trend is particularly pronounced in the test results
of the AMOS dataset. The last two columns of Table.1 presents each model’s
inference time and parameters. It is evident that all models exhibit fast inference
times. Regarding the model parameter, our proposed model falls into the mid-
range category. Thus, considering both performance and model complexity, our
model achieves a better balance.

Ablation Study on Recursive Inference: Table 2 presents the model’s
performance based on different recursion depths. The choice of recursion follows
two rules: (1) select the setting yielding the highest DSC; (2) if DSC is equal,
choose the configuration with lower computational cost. We first conducted a
single recursive analysis across different scales, corresponding to columns 3-6 in
Table 2. For the HB and HC datasets, the results improved when the configura-
tion was set to (a,b,c,d) = 1121. We further tested the configuration 1131 and
found that the performance declined. Therefore, the best model structure for the
HB and HC datasets was 1121. Similarly, we analyzed the AMOS dataset and
found that the performance improved with the configuration (a,b,c,d) = 1211,
but declined when set to 1311. Thus, the most suitable model structure for the
AMOS dataset was 1211. The experimental results indicate that, for the trained
model, a simple inference test is sufficient to determine its final structure, further
enhancing performance.

5 Conclusion

We propose a novel multimodal deformable registration model RDMR, which ef-
fectively addresses the challenges of multi-modal registration, large deformations,
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Table 2. shows the recursive registration results at different scales. The four-digit
number represents the number of recursions at each scale, corresponding to the model’s
structural parameters a, b, c, and d.

1111 2111 1211 1121 1112 1131 1311

HB 87.7±8.2 87.1±9.4 87.2±8.8 88.0±8.0 87.0±8.3 87.9±7.9 -
HC 86.2±15.0 80.7±14.5 83.9±13.1 87.0±11.3 86.8±14.2 86.8±12.9 -

AMOS 84.7±5.7 82.7±6.4 84.9±5.8 84.6±5.8 84.8±6.1 - 84.8±6.0

and model generalizability. We propose a multiscale registration feature fusion
mechanism and a multi-layer modality-invariant contrastive loss constraint to
address the challenges of large deformations and multimodal registration, re-
spectively. Additionally, we introduce a recursive inference strategy that further
enhances the model’s performance. This strategy is versatile and can be adopted
by researchers in related fields. Our future research direction involves further op-
timizing the concept of recursive inference, allowing it to dynamically determine
the appropriate number of recursions.
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