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Abstract. Multi-modal neuroimaging studies are essential for explor-
ing various brain disorders; however, they are typically limited in sample
size owing to the cost of image acquisition. Meta-analysis is an underuti-
lized method that integrates the findings from multiple studies derived
from large samples to assist individual studies. Neuroimaging studies are
increasingly adopting transformer architecture for network analysis; how-
ever, they tend to overlook local brain networks. To address these gaps,
we propose the Meta-analysis Enhanced Graph Attention TransFormer
(MEGATF), a novel method for performing multimodal brain analy-
sis built on a graph transformer framework aided with meta-analysis
information derived from NeuroSynth. Our method adapts a graph neu-
ral network with a transformer attention mechanism that favors local
networks and multimodal interactions using PET or cortical thickness.
Our method achieved a state-of-the-art classification performance on
mild cognitive impairment and attention-deficit/hyperactivity disorder
datasets, distinguishing individuals with brain disorders from controls.
Furthermore, it identified disease-affected brain regions and associated
cognitive decoding that aligned with existing findings, thereby enhancing
its interpretability. Our code is at https://github.com/gudtls17/MEGATF.

Keywords: Graph transformer · meta-analysis · multimodal analysis ·
disease classification.

1 Introduction

Neuroimaging helps explore neurodegenerative and psychiatric brain disorders
[2,7]. Positron emission tomography (PET) can measure abnormal metabolic ac-
tivity related to Alzheimer’s disease (AD) and mild cognitive impairment (MCI)
[19]. Magnetic resonance imaging (MRI), specifically structural MRI (sMRI)
and functional MRI (fMRI), can detect structural and functional alterations, re-
spectively in the brain related to AD, MCI, and attention-deficit/hyperactivity
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disorder (ADHD) [20]. Each imaging modality makes a different contribution.
Thus, it is crucial to integrate various modalities in a multimodal manner.

A meta-analysis integrates findings from multiple large-sample studies to help
draw conclusions from a given study with fewer samples. Meta-analysis strength-
ens the overall conclusions and provides valuable supplementary information to
address limitations of individual studies. This helps mitigate data shortage and
focuses on critical brain regions, thereby enhancing the interpretability of the
analysis [11,26]. Incorporating the information from meta-analysis into multi-
modal approaches can facilitate a deeper understanding of brain disorders by
providing complementary insights. Notably, meta-analysis platforms based on
fMRI offer cognitive decoding using standardized cognition-behavior terms [26],
aiding the construction of cognition-related representations and interpretation
[6,7]. That is, researchers can harness rich information on the cognition-behavior
terms tied to brain activation maps. Thus, when integrated into multimodal ap-
proaches, meta-analysis has the potential to significantly advance the accuracy
and reliability of multimodal analysis in brain disorder research. However, it
remains underutilized.

The use of connectivity graphs in neuroimaging has facilitated the represen-
tation of interactions between brain regions, thereby advancing brain network
analysis [17]. Although the transformer model has shown promising performance
in conventional brain analysis [3,14], its application to brain networks remains
limited because of the difficulty in modeling local interactions within a token (i.e.,
sub-modules in a brain region). To address this, research on graph transformers
has been actively conducted by combining graph neural networks (GNNs) with
transformer architectures [27]. However, existing graph transformer models tend
to prioritize global network representations, while overlooking the significance of
local brain networks [23,27]. Additionally, the node attributes of brain regions
are well captured [10], but the edge attributes representing regional interactions
are often neglected, especially in multimodal analysis. We aimed to bridge these
gaps by incorporating diverse region-by-region interactions expressed in multiple
modalities as edge features, enhancing the representation of local brain networks,
and optimizing their integration within the transformer framework using an edge
graph attention network [21]. Our study addresses the following two key chal-
lenges: (1) The lack of meta-analysis information in multimodal brain
analysis. (2) The limited use of edge features, often neglecting diverse
regional brain interactions in multimodal inputs.

To overcome these limitations, we introduce a Meta-analysis Enhanced Graph
Attention TransFormer (MEGATF), which is a novel method for multimodal
brain analysis, built on a graph transformer framework, aided by meta-analysis
information. Our key contributions are as follows: (1) We incorporate meta-
analysis information to extend multimodal brain analysis. (2) We de-
sign an attention mechanism using a GNN that incorporates local
brain networks and multimodal interactions. (3) We demonstrate the
superiority of our method and highlight the brain regions linked to
various brain disorders (AD and ADHD) enhancing interpretability.
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Fig. 1. Overview of the MEGATF model. (a) Brain features (SUVR CL or cortical
thickness) from PET or sMRI are refined into cognition-behavior terms-weighted node
features via meta-analysis. The connectivity between node features is calculated from
the term-weighted node features and standard functional connectivity is calculated
from functional MRI timeseries. Both are used to construct the edge features. (b) A
standard transformer encoder layer is used for MEGATF and the edge graph attention
network employs a multi-head attention mechanism. (c) Node and edge features were
used to define attention coefficients (upper). Multi-head attention gathers neighbor
information, aggregates features and linearly projects them to update node features.
Arrow colors indicate independent attention computations (bottom).

2 Method

2.1 Overview of the method

We used preprocessed brain images of PET or sMRI and parcellated them into
N regions of interest (ROIs) based on a given atlas. Subsequently, we construct
the brain features, V ∈ RN×1, such as a centiloid scale of the standardized
uptake value ratio (SUVR CL) from PET or cortical thickness obtained from
T1-weighted sMRI. We also obtain standardized voxel-level activation maps Ad

for d-th distinct cognition-behavior terms (e.g., memory) from the meta-analysis
platform of Neurosynth [5]. We further refine regional brain features by the
weighted sum of the voxel-level term activation maps to obtain the graph node
feature, X ∈ RN×D. Additionally, we construct a node feature connectivity ma-
trix, e1 ∈ RN×N and functional connectivity matrix, e2 ∈ RN×N by calculating
the Pearson’s correlation coefficients between the term-weighted node features
of pairs of ROIs and the fMRI timeseries of pairs of ROIs, respectively. The
edge feature e is constructed by concatenating e1 and e2. The node feature X
and edge feature e serve as inputs to the graph multi-head attention module of
MEGATF to model the local brain networks. The output from MEGATF (X ′)
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is passed through a readout layer followed by multi-layer perceptrons (MLPs) to
perform a classification task (Fig. 1).

2.2 Constructing the graph structure

Generating brain features. We define brain features using SUVR CL from
PET and cortical thickness from T1 sMRI. The SUVR CL is derived using
the cerebellum as the reference region, by dividing the PET voxel values by
the mean value of the cerebellum. Two types of PET images, AV45-PET and
FBB-PET, are used for analysis. The measurements are standardized using a
well-established formula to ensure comparability between the two types of PET
images [15]. Cortical thickness is standardized using the mean and variance of
the values from normal individuals, a method that has been successfully used in
neurodegenerative disease research to emphasize disease-related variations [8].

Obtaining cognition-behavior terms activation maps from meta-analysis.
We obtain activation maps from Neurosynth, which aggregates brain activation
maps from 14,371 studies [26]. Neurosynth provides voxel-wise z-score maps for
1,334 cognition-behavior terms to assess the distribution of brain activation. A
previous study narrowed down the 1,334 terms to 334 [9], and we further select
D = 64 terms related to AD and ADHD.

Generating term-weighted node features. To enrich the information on
the brain regions, we integrated the meta-analysis information with the brain
features. Based on the given atlas, the entire brain is composed of N ROIs, where
each region has many voxels. Conventionally, the i-th ROI in the brain feature V
or the term activation map Ad for the d-th cognition-behavior terms is defined as
the mean value of the voxels in the ROI. However, the term activation map is a
voxel-wise map with finer granularity. Considering the spatially varying weights
of the activation map, we define the weighted brain feature for the i-th ROI and
the d-th cognitive term Xid using the voxel-wise weighted mean of the cognitive
map with the brain feature matrix V , where K is the number of voxels in a given
ROI. Finally, we aggregate each term and region obtaining X ∈ RN×D (Fig.
1(a)).

Xid =

∑K
k=1(voxelAd

i,k · voxelVi,k)∑K
k=1 voxelAd

i,k

i ∈ 1, 2, ..., N, d ∈ 1, 2, ..., D (1)

Generating edge features. We define the interactions between a pair of ROIs
in different modalities as follows: First, we measure the relationship between
term-weighted node features. The ij-th element of the term-weighted node feature
connectivity (NFC) matrix e1 is defined by calculating the Pearson’s correlation
coefficient between the i-th row of X (Xi) and the j-th row (Xj), where i, j ∈
1, 2, ..., N . Second, to obtain spatial perspective, we measure the relationship
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between the fMRI timeseries of a pair of ROIs, which is noted as functional
connectivity (FC). Given that fMRI timeseries ∈ RN×t, where t represents the
number of timepoints across N ROIs, the ij-th element of the FC matrix e2 is
defined by calculating Pearson’s correlation coefficient between timeseriesi and
timeseriesj , where i, j ∈ 1, 2, ..., N . Finally, we concatenate the term-weighted
NFC matrix e1 and FC matrix e2 to define the edge feature e ∈ RN×N×2 (Fig.
1(a)).

2.3 Graph-based attention transformer

Graph multi-head attention. We propose a graph-based multi-head attention
mechanism to the standard transformer encoder layer (Fig. 1(b)), applying self-
attention to graph structures and updating node representations by attending
to neighbors. Each node computes its hidden representation by dynamically
weighing its neighbors through a self-attention strategy [24]. The edges between
node pairs contribute to this process, assigning specific weights to neighboring
connections and thereby enhancing information propagation. In brain network
analysis, the nodes represent brain regions and the edges denote interactions
between them. The graph multi-head attention mechanism is implemented using
the edge graph attention layer (EdgeGAT) [21], where the term-weighted node
feature X and edge feature e serve as inputs. Specifically, EdgeGAT(X, e)=Θs ·
Xi +

∑h
Head=1

∑N
j=1 a

h
j,i(Θ

h
n · Xh

j + Θh
e · ej,i), where Θs, Θn, Θe are learnable

weight matrices for node features (self and neighbor) and edge features and a
is attention coefficient between the nodes Xj and Xi. Attention coefficients are
defined as aj,i = softmax(LeakyReLU(αT [Θn ·Xi∥Θn ·Xj∥Θe ·ej,i])), where α is a
learnable vector (Fig. 1(c)). Finally, the output of MEGATF, X ′ is calculated.

Readout layer and loss function. To efficiently handle the graph structure,
we employ the OCRead layer, which is specifically designed for graph data [14].
The outputs from the OCRead layer are subsequently passed through the MLPs
to perform the classification task, with the cross-entropy loss used for prediction.

3 Experiments

3.1 Datasets and experimental settings

Dataset. We evaluated our method using the publicly available AD dataset from
the AD Neuroimaging Initiative (ADNI) [25], and the ADHD dataset from the
Healthy Brain Network (HBN) [1]. We selected individuals who had both PET
and fMRI data from the ADNI 1, 2, 3, and GO phases, T1-weighted sMRI, and
fMRI data from the HBN. MRI data were preprocessed using fMRIprep [12], and
PET images were preprocessed following conventional steps [13]. Brain regions
were parcellated into 200 regions using the Schafer atlas [22]. We performed three
classification tasks related to diagnosis or prognosis. Task 1 was the classification
of individuals with MCI and cognitively normal (CN) individuals (ADNI: 117
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Table 1. Diagnosis prediction results for MCI vs. CN (task1) (Mean±standard devia-
tion [SD]). Bold indicates the best performance. Each model’s top result is underlined.

Task 1
Model Input types Accuracy AUROC Sensitivity Specificity

BrainNetGNN
(MIA21) [17]

SUVR CL 68.8±2.4 73.4±5.3 72.2±8.1 65.9±5.9
FC 60.0±6.9 67.2±9.3 57.4±6.4 62.2±10.3

Term weighted 64.4±6.1 76.1±4.0 43.5±18.2 82.2±9.5

BNT
(NeurIPS22) [14]

SUVR CL 72.0±4.0 81.5±2.2 67.0±10.5 76.3±6.5
FC 72.0±7.3 85.9±5.0 51.3±22.9 89.6±8.3

Term weighted 75.2±7.7 85.2±6.4 72.2±9.8 77.8±14.2

Com-BrainTF
(MICCAI23) [3]

SUVR CL 69.2±8.1 81.3±2.7 60.9±32.2 76.3±13.0
FC 75.6±4.1 85.3±4.1 60.0±15.9 88.9±8.4

Term weighted 74.0±3.8 85.5±4.7 68.7±14.9 78.5±15.8

Graphormer
(NeurIPS21) [27]

SUVR CL 73.2±3.5 81.6±2.5 64.4±6.4 80.7±7.6
FC 75.2±7.4 85.4±6.0 63.5±16.6 85.2±12.2

Term weighted 77.6±3.2 85.7±4.5 72.2±6.5 82.2±9.5

Ours
SUVR CL 73.6±4.1 82.3±3.8 67.0±3.5 79.3±6.5

FC 70.4±11.7 85.9±5.5 53.9±33.3 84.4±8.9
Term weighted 78.0±3.6 86.6±4.0 71.3±2.1 83.7±5.0

MCI and 132 CN), task 2 was AD conversion prediction (i.e., ADNI: 39 stable
MCI [sMCI] and 47 MCI progressing to AD [pMCI]), and task 3 was classification
of individuals with ADHD and CN (HBN: 86 ADHD and 68 CN). Additional 30
CN individuals from the HBN were used to standardize cortical thickness.

Implementation details. All models were implemented in PyTorch and trained
using NVIDIA RTX 4070 TI (12GB). The transformer layer had two attention
heads with Adam optimization (learning rate=10−4, weight decay=10−4). The
batch size was set to 32 and a stratified five-fold cross-validation was applied over
50 epochs, selecting the highest area under the receiver operator curve (AUROC)
model per fold and reporting the average of five folds.

3.2 Experimental results

Comparison with state-of-the-art methods. The quantitative diagnostic
and prognostic results are presented in Tables 1 and 2. Our model achieved
the highest accuracy and AUROC, compared with the other models, for all three
tasks, with marginal improvements in sensitivity and specificity. Term-weighted
node features tended to outperform other inputs like SUVR CL or cortical thick-
ness, and FC. Brain features were converted into a matrix using Gaussian sim-
ilarity function, exp(−∥vi−vj∥2

2σ2 ), where v is the specific feature of a given brain
region. Unlike term-weighted node features, brain features and FC used identical
values for both the node and edge features. These results emphasize the benefits
of meta-analysis information and graph multi-head attention.
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Table 2. Prediction results for sMCI vs. pMCI (task2) and ADHD vs. CN (task3)
(Mean±SD). The brain feature used in task2 is SUVR CL and task3 uses cortical
thickness. Bold indicates the best performance. Each model’s top result is underlined.

Task 2 Task 3

Model Input types Accuracy AUROC Accuracy AUROC

BrainNetGNN
(MIA21) [17]

Brain feature 65.6±6.5 73.8±10.4 59.4±6.3 59.9±11.6
FC 58.9±9.0 72.5±13.4 61.3±7.1 59.5±9.1

Term weighted 77.8±9.3 91.5±8.5 56.8±3.3 60.0±3.3

BNT
(NeurIPS22) [14]

Brain feature 80.0±6.7 87.8±7.5 57.4±2.4 57.4±5.8
FC 76.7±11.3 84.0±5.8 60.6±4.3 62.8±12.0

Term weighted 85.6±7.5 91.8±8.4 60.0±3.9 63.6±2.7

Com-BrainTF
(MICCAI23) [3]

Brain feature 78.9±8.2 87.0±6.1 55.5±2.4 58.4±4.6
FC 80.0±9.0 85.8±6.8 55.5±5.2 61.6±10.1

Term weighted 84.4±6.5 92.8±5.7 56.8±2.6 61.8±6.8

Graphormer
(NeurIPS21) [27]

Brain feature 71.1±8.9 87.2±6.9 58.1±4.1 59.2±7.6
FC 77.8±8.6 88.5±5.6 58.1±4.6 55.7±8.6

Term weighted 85.6±6.7 91.3±8.3 57.4±4.7 61.1±4.6

Ours
Brain feature 81.1±8.3 86.2±7.2 56.8±5.6 60.8±4.7

FC 76.7±6.5 86.3±8.5 61.3±4.1 61.6±8.0
Term weighted 87.8±9.6 93.5±7.8 61.9±9.0 63.8±7.0

Fig. 2. Interpretation of the important brain regions and terms. (a) shows the
top 25% important brain regions in the three tasks. (b) shows the important terms.

Interpretation of the ROI and term-level importance. To assess the key
ROIs and cognition-behavior terms in the prediction, we visualized the impor-
tant regions and terms using the final layer features. Fig. 2(a) shows the top
25% important regions. In tasks 1 and 2, cingulate gyrus, occipital cortex, tem-
poral gyrus, preforntal, limbic, and motor cortex were identified related to AD
prediction and prognosis [4,5,28]. In ADHD prediction (task 3), frontoparietal,
temporal gyrus, limbic, and cingulate regions were important [16,18]. Fig. 2(b)
shows the top terms. In task 1, memory, cognition, and emotion-related terms
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Table 3. Effect of different combinations of edge features on the prediction performance
in ablation studies. Bold indicates the best performance.

Task 1 Task 2 Task 3

Methods Accuracy AUROC Accuracy AUROC Accuracy AUROC

w/o edge feature 73.6±7.3 86.1±4.4 82.2±6.5 93.3±3.8 59.4±4.4 61.3±4.8
One edge feature (FC) 73.6±3.9 84.2±5.8 83.3±7.0 92.8±4.1 56.1±2.6 60.1±9.5

One edge feature (NFC) 72.8±5.6 84.4±3.5 83.3±11.7 93.2±4.9 58.7±2.4 59.0±5.4

Our method 78.0±3.6 86.6±4.0 87.8±9.6 93.5±7.8 61.9±9.0 63.8±7.0

Fig. 3. Effect of the number of cognitive terms on the prediction. Comparison
of results based on the number of terms used to create the node features.

like “amnestic”, “ptsd”, and “sad” were crucial, known to be affected by AD [4,5].
Similar process-related terms appeared in task 2. Task 3 revealed terms linked
to emotion regulation and decision-making, aligning with ADHD studies [18].

Ablation study. We performed ablation studies about the effects of edge fea-
tures and number of terms. Table 3 highlights the performance variations based
on the edge feature type, showing that removing edge features or using only
FC or term-weighted feature connectivity individually resulted in worse per-
formance, compared with our method. That is, combining both types of edge
features enhanced the prediction performance. In summary, we observed that
both FC derived from regional interactions in fMRI and term-weighted feature
connectivity derived from the meta-analysis contributed to improvements in the
prediction performance. Fig. 3 shows the prediction performance based on the
number of terms used. The accuracy and AUROC increased monotonically up to
64 terms and then decreased, demonstrating the effectiveness of using 64 terms.

4 Conclusion

We proposed MEGATF, a meta-analysis-guided method for multimodal brain
analysis. It achieved superior performance in classifying individuals with brain
disorders while identifying explainable and clinically relevant brain regions. By
leveraging meta-analysis information, MEGATF linked brain feature maps to AD
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or ADHD related cognitive functions. A key strength is using graph-based multi-
head attention to capture local brain network interactions. Given its success in
AD and ADHD, MEGATF has potential to be applied to other brain disorders.

Acknowledgments. This study was supported by National Research Founda-
tion (RS-2024-00408040), AI Graduate School Support Program (Sungkyunkwan
University) (RS-2019-II190421), ICT Creative Consilience program (RS-2020-
II201821), and Artificial Intelligence Innovation Hub program (RS-2021-II212068).

Disclosure of Interests. The authors declare no competing interests relevant
to the content of this article.

References

1. Alexander, L.M., Escalera, J., Ai, L., Andreotti, C., Febre, K., Mangone, A., Vega-
Potler, N., Langer, N., Alexander, A., Kovacs, M., et al.: An open resource for
transdiagnostic research in pediatric mental health and learning disorders. Scien-
tific data 4(1), 1–26 (2017)

2. Arbabshirani, M.R., Plis, S., Sui, J., Calhoun, V.D.: Single subject prediction of
brain disorders in neuroimaging: Promises and pitfalls. Neuroimage 145, 137–165
(2017)

3. Bannadabhavi, A., Lee, S., Deng, W., Ying, R., Li, X.: Community-aware trans-
former for autism prediction in fmri connectome. In: International Conference
on Medical Image Computing and Computer-Assisted Intervention. pp. 287–297.
Springer (2023)

4. Brewer, A.A., Barton, B.: Visual cortex in aging and alzheimer’s disease: changes
in visual field maps and population receptive fields. Frontiers in psychology 5, 74
(2014)

5. Cerami, C., Della Rosa, P.A., Magnani, G., Santangelo, R., Marcone, A., Cappa,
S.F., Perani, D.: Brain metabolic maps in mild cognitive impairment predict het-
erogeneity of progression to dementia. NeuroImage: Clinical 7, 187–194 (2015)

6. Choi, H., Byeon, K., Lee, J.e., Hong, S.J., Park, B.y., Park, H.: Identifying sub-
groups of eating behavior traits unrelated to obesity using functional connectivity
and feature representation learning. Human Brain Mapping 45(1), e26581 (2024)

7. Choi, H., Byeon, K., Park, B.y., Lee, J.e., Valk, S.L., Bernhardt, B., Di Martino,
A., Milham, M., Hong, S.J., Park, H.: Diagnosis-informed connectivity subtyping
discovers subgroups of autism with reproducible symptom profiles. NeuroImage
256, 119212 (2022)

8. Chung, J., Yoo, K., Lee, P., Kim, C.M., Roh, J.H., Park, J.E., Kim, S.J., Seo,
S.W., Shin, J.H., Seong, J.K., et al.: Normalization of cortical thickness measure-
ments across different t1 magnetic resonance imaging protocols by novel w-score
standardization. Neuroimage 159, 224–235 (2017)

9. Collins, E., Chishti, O., Obaid, S., McGrath, H., King, A., Shen, X., Arora, J.,
Papademetris, X., Constable, R.T., Spencer, D.D., et al.: Mapping the structure-
function relationship along macroscale gradients in the human brain. Nature Com-
munications 15(1), 7063 (2024)



10 H. Choi et al.

10. Cui, H., Dai, W., Zhu, Y., Kan, X., Gu, A.A.C., Lukemire, J., Zhan, L., He, L.,
Guo, Y., Yang, C.: Braingb: a benchmark for brain network analysis with graph
neural networks. IEEE transactions on medical imaging 42(2), 493–506 (2022)

11. Dockès, J., Poldrack, R.A., Primet, R., Gözükan, H., Yarkoni, T., Suchanek, F.,
Thirion, B., Varoquaux, G.: Neuroquery, comprehensive meta-analysis of human
brain mapping. elife 9, e53385 (2020)

12. Esteban, O., Markiewicz, C.J., Blair, R.W., Moodie, C.A., Isik, A.I., Erramuzpe,
A., Kent, J.D., Goncalves, M., DuPre, E., Snyder, M., et al.: fmriprep: a robust
preprocessing pipeline for functional mri. Nature methods 16(1), 111–116 (2019)

13. Jagust, W.J., Landau, S.M., Koeppe, R.A., Reiman, E.M., Chen, K., Mathis, C.A.,
Price, J.C., Foster, N.L., Wang, A.Y.: The alzheimer’s disease neuroimaging ini-
tiative 2 pet core: 2015. Alzheimer’s & Dementia 11(7), 757–771 (2015)

14. Kan, X., Dai, W., Cui, H., Zhang, Z., Guo, Y., Yang, C.: Brain network trans-
former. Advances in Neural Information Processing Systems 35, 25586–25599
(2022)

15. Klunk, W.E., Koeppe, R.A., Price, J.C., Benzinger, T.L., Devous Sr, M.D., Jagust,
W.J., Johnson, K.A., Mathis, C.A., Minhas, D., Pontecorvo, M.J., et al.: The
centiloid project: standardizing quantitative amyloid plaque estimation by pet.
Alzheimer’s & dementia 11(1), 1–15 (2015)

16. Krain, A.L., Castellanos, F.X.: Brain development and adhd. Clinical psychology
review 26(4), 433–444 (2006)

17. Li, X., Zhou, Y., Dvornek, N., Zhang, M., Gao, S., Zhuang, J., Scheinost, D.,
Staib, L.H., Ventola, P., Duncan, J.S.: Braingnn: Interpretable brain graph neural
network for fmri analysis. Medical Image Analysis 74, 102233 (2021)

18. Lin, H.Y., Tseng, W.Y.I., Lai, M.C., Matsuo, K., Gau, S.S.F.: Altered resting-
state frontoparietal control network in children with attention-deficit/hyperactivity
disorder. Journal of the International Neuropsychological Society 21(4), 271–284
(2015)

19. Marcus, C., Mena, E., Subramaniam, R.M.: Brain pet in the diagnosis of
alzheimer’s disease. Clinical nuclear medicine 39(10), e413–e426 (2014)

20. McAlonan, G.M., Cheung, V., Cheung, C., Chua, S.E., Murphy, D.G., Suckling,
J., Tai, K.S., Yip, L.K., Leung, P., Ho, T.P.: Mapping brain structure in attention
deficit-hyperactivity disorder: a voxel-based mri study of regional grey and white
matter volume. Psychiatry Research: Neuroimaging 154(2), 171–180 (2007)

21. Monninger, T., Schmidt, J., Rupprecht, J., Raba, D., Jordan, J., Frank, D., Staab,
S., Dietmayer, K.: Scene: Reasoning about traffic scenes using heterogeneous graph
neural networks. IEEE Robotics and Automation Letters 8(3), 1531–1538 (2023)

22. Schaefer, A., Kong, R., Gordon, E.M., Laumann, T.O., Zuo, X.N., Holmes, A.J.,
Eickhoff, S.B., Yeo, B.T.: Local-global parcellation of the human cerebral cortex
from intrinsic functional connectivity mri. Cerebral cortex 28(9), 3095–3114 (2018)

23. Sepulcre, J., Liu, H., Talukdar, T., Martincorena, I., Yeo, B.T., Buckner, R.L.:
The organization of local and distant functional connectivity in the human brain.
PLoS computational biology 6(6), e1000808 (2010)

24. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph
attention networks. In: International Conference on Learning Representations
(2018), https://openreview.net/forum?id=rJXMpikCZ

25. Weiner, M.W., Veitch, D.P., Aisen, P.S., Beckett, L.A., Cairns, N.J., Green, R.C.,
Harvey, D., Jack, C.R., Jagust, W., Liu, E., et al.: The alzheimer’s disease neu-
roimaging initiative: a review of papers published since its inception. Alzheimer’s
& Dementia 9(5), e111–e194 (2013)

https://openreview.net/forum?id=rJXMpikCZ


Meta-analysis Enhanced Graph Attention TransFormer 11

26. Yarkoni, T., Poldrack, R.A., Nichols, T.E., Van Essen, D.C., Wager, T.D.: Large-
scale automated synthesis of human functional neuroimaging data. Nature methods
8(8), 665–670 (2011)

27. Ying, C., Cai, T., Luo, S., Zheng, S., Ke, G., He, D., Shen, Y., Liu, T.Y.: Do
transformers really perform badly for graph representation? Advances in neural
information processing systems 34, 28877–28888 (2021)

28. Yu, E., Liao, Z., Mao, D., Zhang, Q., Ji, G., Li, Y., Ding, Z.: Directed functional
connectivity of posterior cingulate cortex and whole brain in alzheimer’s disease
and mild cognitive impairment. Current Alzheimer Research 14(6), 628–635 (2017)


	Integrating meta-analysis in multi-modal brain studies with graph-based attention transformer

