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Abstract. Automated pathology report generation from Whole Slide
Images (WSIs) faces two key challenges: (1) lack of semantic content in
visual features and (2) inherent information redundancy in WSIs. To ad-
dress these issues, we propose a novel Historical Report Guided Bi-modal
Concurrent Learning Framework for Pathology Report Generation (Bi-
Gen) emulating pathologists’ diagnostic reasoning, consisting of: (1) A
knowledge retrieval mechanism to provide rich semantic content, which
retrieves WSI-relevant knowledge from pre-built medical knowledge bank
by matching high-attention patches and (2) A bi-modal concurrent learn-
ing strategy instantiated via a learnable visual token and a learnable
textual token to dynamically extract key visual features and retrieved
knowledge, where weight-shared layers enable cross-modal alignment be-
tween visual features and knowledge features. Our multi-modal decoder
integrates both modals for comprehensive diagnostic reports generation.
Experiments on the PathText (BRCA) dataset demonstrate our frame-
work’s superiority, achieving state-of-the-art performance with 7.4% rel-
ative improvement in NLP metrics and 19.1% enhancement in classi-
fication metrics for Her-2 prediction versus existing methods. Ablation
studies validate the necessity of our proposed modules, highlighting our
method’s ability to provide WSI-relevant rich semantic content and sup-
press information redundancy in WSIs. Code is publicly available at
https://github.com/DeepMed-Lab-ECNU/BiGen.

Keywords: Whole Slide Image · Image Caption · Pathology Report
Generation.

1 Introduction

The automated analysis of Whole Slide Images (WSIs) in digital pathology has
emerged as a significant research direction in the field of medical artificial intel-
ligence recently [7,17,26]. Among these, the task of pathology report generation
based on WSIs has garnered considerable attention due to its immense potential
in assisting diagnosis and reducing the workload of physicians [3,10,21,22].

In recent years, there have been a significant number of studies on image
captioning [15,25,27,29]. In the medical field, numerous studies have focused
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on generating radiology reports from radiological images [5,6,9]. There are also
studies [12,16,23] that have focused on obtaining descriptions of small patholog-
ical regions of interest. Compared with these report generation tasks, generating
reports from WSIs is more challenging and less studied. The challenge relies
mainly on how to effectively extract semantically diagnostic features from
WSIs with ultra-high resolution [13,28]. Existing approaches such as MI-Gen
[3] directly apply a Transformer model to input image tokens, allowing each
token to interact with other tokens. HistGen [10] employs local-global hierarchi-
cal visual encoding to input image tokens, which still relies on a self-attention
mechanism to explore relationships among multiple tokens. Though global vi-
sual features can be learned via self-attention, these methods only learn visual
features from WSI itself, which inevitably (1) lack of semantic content and
(2) introduce considerable redundancy.

To address these challenges, we propose to leverage historical diagnostic re-
ports to guide the learning of semantically key pathological features for gen-
erating current WSI’s report. Concretely, we let the visual features be learned
along with the relevant textual features, whose knowledge is retrieved from a
pre-built knowledge bank. Our method contains two key components: (1) We
propose to retrieve WSI-relevant report candidates from a pre-built knowledge
bank to provide semantically rich diagnostic report information. (2) We pro-
pose a bi-modal concurrent learning strategy. It is instantiated via a learnable
visual token and a learnable textual token which extract key pathological fea-
tures and key knowledge features, respectively. The strategy also enables the
learning of visual token to be guided by the semantically rich textual token.
The knowledge retrieval emulates the process that pathologists recall historical
diagnosis records from similar cases to aid current decision-making. The visual
and textual token represent a more global perspective to mirror the way pathol-
ogists view WSIs and recall historical diagnosis records—they don’t necessarily
examine each patch or each record but rather focus on key information to make
a comprehensive diagnosis. The main contributions of this paper can be sum-
marized as follows:

• To the best of our knowledge, we first introduce an explicit knowledge re-
trieval mechanism into the pathology report generation task to enhance se-
mantically rich diagnostic report information, establishing an interpretable
cross-modal knowledge transfer paradigm.

• We propose a bi-modal concurrent learning strategy to dynamically extract
key features in WSIs and retrieved knowledge, effectively suppressing infor-
mation redundancy while enhancing pathological semantic learning.

• Experiments on the PathText (BRCA) dataset demonstrate that our method
significantly outperforms existing benchmarks in report generation quality
(BLEU-4=0.135, ROUGE-L=0.293) and Her-2 prediction metrics (F1=0.730).
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Fig. 1. Overview of BiGen. The overall framework in (a), consists of a bi-modal concur-
rent learning encoder and a multi-modal decoder. "CA" and "FFN" indicates Cross-
attention and Feed-Forward Network. "VTCA" and "TTCA" refer to the visual and
textual token cross-attention. We construct a knowledge bank in (b) and retrieve WSI-
relevant knowledge from the knowledge bank through high-attention patches in (c).

2 Method

Our goal is to emulate pathologists’ diagnostic reasoning through the integration
of visual evidence and historical knowledge, to provide rich semantic content and
suppress redundant information in WSIs. For this, we introduce a novel Histor-
ical Report Guided Bi-modal Concurrent Learning Framework for Pathology
Report Generation (BiGen), which involves a visual branch and a knowledge
branch (as illustrated in Fig. 1 (a)). In the visual branch (Sec. 2.2) , compact vi-
sual features are iteratively aggregated through the visual token cross-attention
(VTCA) module to focus on key pathological patterns. In the knowledge branch
(Sec. 2.3), a knowledge retrieval module is designed to retrieve WSI-relevant
knowledge features from a pre-constructed knowledge bank by matching high-
attention patches from the visual branch. Furthermore, the retrieved knowledge
features are aggregated through the textual token cross-attention (TTCA) mod-
ule, sharing weights with the visual token cross-attention layers and obtaining
rich semantic content. Finally, a multi-modal decoder (Sec. 2.4) integrates both
visual and textual tokens to generate comprehensive diagnostic reports.
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2.1 Problem Formulation

The task of pathology report generation is formulated as a sequence-to-sequence
problem, where the input consists of multiple image tokens extracted from a
high-dimensional pathology image, and the output is a natural language report.
Let {wi}Mi=1 denote the set of non-overlapping patches cropped from the WSI
W, where M is the number of patches. The objective is to generate the target
pathology report Y = {yn}Nn=1, where N is the length of the report for W.

A pretrained visual extractor is used to extract feature embeddings from
{wi}Mi=1, followed by a linear projection layer, resulting in a feature matrix
X = {xi}Mi=1, where xi ∈ Rd and d is the embedding dimension. The training
objective is to maximize the likelihood of generating the correct report given the
patch embeddings X. The total negative log-likelihood (NLL) loss is computed
as: L = −

∑N
n=1 logP (yn|{yi}i<n,X), where {yi}i<n represents the previously

generated tokens in the report sequence.

2.2 Visual Token Cross-attention

In the visual branch, we propose a visual token cross-attention module to extract
a compact and informative visual representation of the WSI. Instead of perform-
ing self-attention over all patch features, we utilize a cross-attention mechanism,
where a single learnable token attends to all patch features. Specifically, we ini-
tialize a visual token V0 ∈ R1×d as the query. The patch features X ∈ RM×d act
as the key and the value, and the cross-attention mechanism is applied iteratively
over L layers, yielding the following update rule:

Vl = CrossAttn(Vl−1,X;Θl), l ∈ {1, 2, . . . , L}, (1)

where CrossAttn(·) denotes the cross-attention layer, and Θl means the l-th
layer’s learnable parameters.

2.3 Knowledge Branch

Pathologists frequently recall historical diagnosis records to support diagnostic
decisions. Inspired by this practice, we incorporate a knowledge retrieval mecha-
nism to enhance the pathology report generation. PLIP [11] is a visual–language
foundation model trained on over 200,000 paired pathology images and text data,
allowing pathologists to search for similar cases through image or text queries,
which is utilized to complete knowledge retrieval in this module.
I. Knowledge Bank Construction: Due to the text token length limitation,
a long report can’t be fed into the text encoder of PLIP [11]. So we construct
a knowledge bank from sentence-level pathology reports to provide high-quality
semantic knowledge, as illustrated in Fig. 1 (b). Specifically, the original reports
in the training set (e.g., PathText (BRCA)) are split into individual sentences
and encoded using the text encoder of PLIP [11]. The resulting sentence embed-
dings are stored as the knowledge bank, denoted as S = {si}Ti=1, where si ∈ Rd,
and T is the number of sentence embeddings in the knowledge bank.
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II. Knowledge Retrieval: As illustrated in Fig. 1 (c), to retrieve knowledge
using image embeddings aligned with sentence embeddings in the knowledge
bank, we feed all patches {wi}Mi=1 into the image encoder of PLIP [11] and
obtain patch embeddings XPLIP = {xPLIP

i }Mi=1, where xPLIP
i ∈ Rd and d is the

embedding dimension. Considering that many patches may be irrelevant to di-
agnosis, retrieving knowledge based on all patches could introduce redundant
and noisy information. Inspired by [2], which optimizes computational efficiency
by learning adaptive attention patterns in early layers and removing unimpor-
tant visual tokens in subsequent layers, we use the attention scores from the first
layer of the visual token cross-attention module (Sec. 2.2) to identify key patches
for knowledge retrieval. Specifically, the top-k patches with the highest attention
scores are selected, where k is the selecting ratio, and their corresponding image
embeddings in XPLIP are collected as P = {pi}M×k

i=1 , where pi ∈ Rd.
Although top-k patches are selected, similarity measure between selected

patch embeddings and sentence embeddings still leads to massive calculation
due to thousands of patch embeddings and thousands of sentence embeddings
stored in the knowledge bank. Considering the spatial neighborhood patches
with same tissue types on a WSI [14], we flatten the token sequence P and
uniformly partition it into M × k/m tissue regions with m as the region size,
ensuring that sparse patch embeddings are compressed. Then the average feature
for each tissue region is computed as the region feature and updated tissue region
embeddings are obtained: P̄ = {P̄1, P̄2, . . . , P̄M×k/m}.

Next, the cosine similarity between each region’s feature in P̄ and all stored
knowledge embeddings in the knowledge bank S are computed. For the i-th
region, we select the top-v knowledge features based on the similarity and obtain
ri = {rji}vj=1, where rji ∈ Rd, and the average knowledge feature in ri is computed
as the retrieved knowledge feature r̄i, where r̄i ∈ Rd. All retrieved knowledge
features are obtained: R = {r̄i}M×k/m

i=1 , followed by a linear projection layer.
III. Textual Token Cross-attention: To focus on key information from re-
dundant retrieved knowledge, we introduce a learnable textual token T0 ∈ R1×d.
Similar to the visual token cross-attention module, we apply a cross-attention
mechanism iteratively to refine the textual global token token:

Tl = CrossAttn(Tl−1,R;Θl), l ∈ {1, 2, . . . , L− 1}. (2)

To promote cross-modal alignment, the cross-attention layers of visual and
knowledge branches share weights, obtaining rich semantic content. Since the
knowledge retrieval relies on the attention scores from the first visual token
cross-attention, the textual token cross-attention are deployed for L− 1 layers.

2.4 Multi-modal Decoder

After refinement for both the visual and textual tokens, we concatenate the two
tokens to form a joint representation: F = Concat(VL,TL−1).

The report sequence is generated auto-regressively, implemented by Masked
Multi-head Self-attention. Specifically, in the l-th decoder layer, the previously
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Table 1. Results of pathology report generation on PathText (BRCA). BLEU-n: the
BLEU score computed based on n-grams. Bold: the highest score. Underline: 2nd score.

Model NLP metrics Classification metrics
BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE Factent Precision Recall F1

CNN-RNN [25] 0.371 0.185 0.089 0.043 0.143 0.239 0.478 0.429 0.750 0.546
att-LSTM [27] 0.371 0.191 0.094 0.048 0.142 0.238 0.460 0.600 0.636 0.618
vanilla Transformer [24] 0.389 0.246 0.157 0.103 0.158 0.257 0.487 0.457 0.800 0.582
R2Gen [6] 0.378 0.243 0.160 0.107 0.179 0.279 0.505 0.486 0.630 0.548
R2GenCMN [5] 0.396 0.254 0.164 0.110 0.163 0.279 0.470 0.429 0.682 0.526
MI-Gen [3] 0.416 0.267 0.174 0.115 0.165 0.270 0.490 0.257 0.529 0.346
HistGen [10] 0.422 0.272 0.177 0.118 0.169 0.277 0.493 0.514 0.643 0.571
ours 0.450 0.296 0.196 0.135 0.180 0.293 0.521 0.657 0.821 0.730

(c) Ground-truth

Correctly prediced information in ground-truth
the pathological report shows that the patient 
has left-sided breast tissue that has been 
r e m o v e d  a n d  i t  c o n t a i n s  a  p o o r l y 
di f ferent iated invasive  ducta l  breast 
carcinoma . the tumor measures up to 6 cm 
and has invaded the lymph vessels extended to 
the base of the nipple and the muscle and has 
been partially excised into the healthy tissue in 
the basal epidermis . there is no tumor  or 
infiltration of the skin . the diagnosis is m-8500/3 
g 3 pt3 pn2a  pmx stage iii a . the report also 
i nc ludes  t he  pa t i e n t s  n a me  a n d  o t h e r  
information which has been redacted for. 

the pathological report describes the findings 
of a resected material from the left breast 
segment . the report reveals a 1.4 cm poorly 
differentiated invasive ductal  breast 
carcinoma with clear surgical margins and a 
tumor . there is also evidence of intraductal 
carcinoma with comedo necrosis in the 
surrounding glandular tissue . the tumor is 
classified as m-8500/3 grade 2 stage pt2 3 pt2 
3 indicating no distant metastasis . there is no 
lymph node involvement . the surgical margins 
are free of tumor . the tumor is classified as m-
8500/3 g 2 pt2 pno sn 0/2 mx ro g2.

(d) Prediction

Matched with ground-truth in prediction Matched with ground-truth in retrieved knowledge

1. The left breast medial needle localization excision reveals invasive ductal carcinoma.
2. Primary invasive carcinoma of the left breast, lateral location.
3. The tumor is invasive and poorly differentiated, with a high mitotic index.
4. Lymph node, sentinel #1, right axilla, excision.
5. The tumor is ER-positive, PR-positive, and HER2-negative.
6. The tumor is poorly differentiated (modified Black's nuclear grade 3).
7. The patient has a positive BRCA2 mutation.
8. The concluding tumor classification is not otherwise specified (NOS), grade III, and pT2NtaLOVORO.
9. The tumor is negative for Ki-67 and positive for E-cadherin.

(e) Retrieved knowledge

(b) Attention score heatmap

tumor tissue

fibrous tissue

High

Low
(a) Thumbnail

TCGA-A8-A08L

Fig. 2. Visualization of the (a) thumbnail, (b) attention score heatmap, (c) report
ground-truth, (d) prediction and (e) retrieved knowledge of sample "TCGA-A8-A08L".

generated words {yl
i}i<n serve as queries, the fused representation F provides

keys and values for the decoder and the n-th word yl
n is predicted as:

yl
n = CrossAttn({yl

i}i<n,F;Ωl), l ∈ {1, 2, . . . , L}, (3)

where Ωl indicates learnable weights for l-th cross-attention layer in the decoder.

3 Experiments and Results

3.1 Implementation Details

I. Datasets: Following [3], we conduct experiments on PathText-BRCA with
the same data splits for training, validation, and testing sets. Additionally, we
remove duplicate patient samples across these sets, ensuring no patient overlap.
Then the training, validation, and test sets contain 796, 88, and 93 samples,
respectively.
II. Model Setting: Following [3], WSIs are processed via CLAM [17] to extract
non-overlapping 256×256 tissue patches at 10x magnification, the number of
encoder and decoder layers are both 3 with 4 attention heads and the embedding
size is 512. UNI [4] (pretrained on over 100 million tissue patches and over 100,000
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Table 2. Ablation study on key components. WS denotes weight sharing between the
visual and knowledge branch. WSL denotes weight sharing across layers in each branch.
VTCA/TTCA refer to the visual/textual token cross-attention. W/o VTCA or TTCA
refers to conducting self-attention. KR refers to the knowledge retrieval module. "AVG.
△" represents the average metric promotion compared to the vanilla Transformer.

WS WSL VTCA KR TTCA BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE Factent AVG. △
✗ ✗ ✗ ✗ ✗ 0.389 0.246 0.157 0.103 0.158 0.257 0.487 –
✗ ✗ ✓ ✗ ✗ 0.436 0.283 0.186 0.126 0.174 0.287 0.499 10.84%
✗ ✓ ✓ ✗ ✗ 0.437 0.286 0.190 0.127 0.174 0.280 0.507 11.41%
✗ ✓ ✓ ✓ ✗ 0.416 0.269 0.176 0.119 0.169 0.283 0.505 7.75%
✗ ✓ ✓ ✓ ✓ 0.441 0.288 0.190 0.130 0.178 0.290 0.515 13.06%
✓ ✓ ✓ ✓ ✓ 0.450 0.296 0.196 0.135 0.180 0.293 0.521 15.26%

WSIs) serves as the visual extractor. Besides, in the knowledge branch, we set
k = 0.4, m = 20, v = 3. We employ Adam optimizer with initial learning rate
1e-4 and weight decay 5e-5. We adopt beam search with the size of 3 as the
sampling method. All experiments is conducted on a single A40-40G GPU.

3.2 Comparison between Ours and Other Methods

We compare with seven image captioning methods in Table 1: two LSTM-based
methods: CNN-RNN [25] and att-LSTM [27], five Transformer-based methods:
Transformer [24], R2Gen [6] and R2GenCMN [5] (both designed for radiology
image captioning), MI-Gen [3] and HistGen [10] (both designed for pathology
report genaration). Following [3], we adopt four Natural Language Processing
(NLP) metrics to evaluate generation performance: BLEU [19], METEOR [1],
ROUGE [20] and Factent [18]. Besides, we adopt three classification metrics to
evaluate Her-2 prediction in generated reports: Precision, Recall and F1 score.

Table 1 shows LSTM-based methods underperform Transformer variants in
NLP metrics. R2Gen [6] and R2GenCMN [5] fall short in recognizing key visual
features when applied to WSI analysis. MI-Gen [3] feed visual tokens into Trans-
former to model relationships between patches, which dilutes critical pathological
features due to the overwhelming number of redundant regions. Although the
local-global hierarchical encoding strategy of HistGen [10] improves efficiency, it
still struggles to select key pathological features and lack semantic content. Our
historical report guided bi-modal concurrent learning method provides rich se-
mantic content and distills critical pathological features and knowledge features
iteratively, achieving 0.135 in BLEU-4 (+14.4% versus HistGen [10]).

Fig. 2 (b) visualizes the attention scores from the 1st layer in the visual token
cross-attention module, highlighting tumor tissues versus fibroblast tissues, indi-
cating key feature extraction capability of our method. Fig. 2 (c-e) demonstrate
our method effectively generates medical terms consistent with the ground truth,
e.g., “m-8500/3”, a morphological term in ICD-O-3 [8], indicating invasive ductal
carcinoma. Additionally, retrieved knowledge enhances semantics, e.g., “Primary
invasive carcinoma of the left breast”, improving diagnostic accuracy.
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Fig. 3. Performance changes by varying the (a) selecting ratio k, (b) number of knowl-
edge features v and region size m.

3.3 Ablation Study

We conduct ablation studies on five components: 1)Weight Sharing (WS) be-
tween the visual and knowledge branch, 2) Weight Sharing across Layers (WSL)
in each branch, 3) Visual Token Cross-attention (VTCA), 4) Knowledge Re-
trieval (KR) and 5) Textual Token Cross-attention (TTCA). As shown in Ta-
ble 2, the baseline model without any proposed modules (i.e., vanilla Trans-
former) achieves the lowest performance (Row 1 in Table 2), confirming the
necessity of addressing redundancy of WSIs and lack of semantic content. In-
troducing VTCA (Row 2 in Table 2) and TTCA (Row 5 in Table 2) yield over
10% and 5% relative improvements, representatively. This demonstrates our bi-
modal concurrent learning strategy effectively mitigates information redundancy
in both WSIs and retrieved knowledge. Enabling WSL (Row 3 in Table 2) fur-
ther enhances BLEU-4, which suggests weight sharing in each branch stabilizes
feature propagation. Simply incorporating the KR module (Row 4 in Table 2)
causes performance drop with redundant knowledge. However, by employing
TTCA (Row 5 in Table 2), consistent performance gain across all metrics, at-
tributed to recognizing key knowledge embeddings with valuable semantic con-
tent. Notably, sharing weights between two branches (Row 6 in Table 2) achieves
optimal performance via cross-modal visual-knowledge alignment.

Fig. 3 shows three hyper-parameter sensitivity, with default values k = 0.4,
v = 3 and m = 20. As illustrated in Fig. 3 (a), it can be seen that k is not sen-
sitive in [0.4, 0.8]. When k is too large, i.e., k = 1, which means using all patch
embeddings to retrieve knowledge, irrelative patches brings considerable redun-
dant information, resulting in obvious performance degradation. As illustrated
in Fig. 3 (b), the best performance can be achieved when v changes from 3 to
7. As illustrated in Fig. 3 (c), performance keeps stable when m varies with the
range of [20, 80], which maintains the best performance with lower computation.

4 Conclusion

In this paper, we present a novel historical report guided bi-modal concurrent
learning framework for pathology report generation to address two challenges:
lack of semantic content and considerable redundancy in WSIs. The proposed
knowledge retrieval provides semantically rich diagnostic report information and
the bi-modal concurrent learning strategy extracts key pathological features and
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key knowledge features. Extensive experiments on the PathText (BRCA) dataset
demonstrate state-of-the-art performance both in report generation and Her-2
prediction. This work establishes a new paradigm for pathology report gener-
ation which effectively integrates visual evidence and historical knowledge and
mitigates information redundancy in both WSIs and retrieved knowledge, with
potential applications extending to other medical image interpretation tasks.
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