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Abstract. Delayed treatment of retinopathy of prematurity (ROP) can
diminish therapeutic efficacy and may lead to severe, potentially irre-
versible damage. Automated diagnosis of ROP presents significant chal-
lenges, including the detection of subtle early lesions, the variability of
clinical phenotypes, and inconsistencies in imaging quality. To address
these, which cannot be well addressed by existing general foundation
models, we propose structure-aware proxy interaction network (SABPI-
Net) within a universal learning framewrok. SABPI-Net incorporates a
high-frequency mapping branch, and introduces a proxy interaction at-
tention module to enable effective interaction between its trunk feature
encoding branch and the high-frequency mapping branch. This enhances
the model’s ability to perceive fine retinal detail structures. Domain-
agnostic embedding space self-matching, guided by a memory-bank low-
frequency component replacement strategy, facilitates domain-invariant
learning and ensures consistent model performance across diverse im-
age styles. In this study, classification task for ROP is conducted on the
largest clinical color fundus photography dataset to date, achieving an
accuracy of 95.32%. Extensive experiments further validate the effective-
ness and superiority of SABPI-Net in diagnosing ROP diseases.
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1 Introduction

Retinopathy of prematurity (ROP), a vasoproliferative disease, is the leading
cause of visual impairment and irreversible blindness in children worldwide. It
primarily affects preterm infants with very low birth weight or those small for
gestational age [27]. Currently, ROP diagnosis relies on binocular indirect oph-
thalmoscopy or wide-field digital fundus image interpretation by experienced
ophthalmologists [6]. However, ROP diagnosis remains subjective, with signif-
icant diagnostic inconsistency even among specialists [7]. Recent studies have
shown some encouraging results in using artificial intelligent (AI) systems for au-
tomated ROP screening using color fundus photography (CFP). Various studies,
such as those by Huang et al. [12] and Zhang et al. [31], have employed different
convolutional neural networks to evaluate their effectiveness in detecting ROP
[10, 32]. Additionally, several studies have developed deep learning systems to
recognise the presence of plus disease, with some extending their work to cate-
gorise pre-plus disease [26, 25, 23, 24].

In recent years, research has increasingly focused on other clinical features
of ROP [1]. For instance, studies on ROP severity grading seek to subclassify
images that are identified as having ROP features according to the severity of
the disease [13,10,25]. Xie et al. [28] introduced an adversarial learning-based
multi-level dense knowledge distillation approach for ROP detection. Subsequent
studies incorporated aggressive posterior ROP into the grading system |31, 28§].
Peng et al. [20] proposed a network for five-level staging of ROP that combines
a multistream parallel feature extractor.

Despite significant advancements, these studies exhibit two critical limita-
tions. First, current automated ROP classification systems are not comprehen-
sive, as they primarily focus on identifying ROP occurrence, plus disease, and
disease severity. There remains a lack of a complete diagnostic framework capa-
ble of addressing the complexity of clinical requirements. For example, such a
system should encompass routine ROP, aggressive ROP (A-ROP), laser-treated
ROP and other infantile retinal diseases. Second, existing models, often trained
on small datasets, still have room for improvement in terms of performance and
disease coverage. In addition to these limitations, automated ROP diagnosis
faces several inherent challenges: A) Early-stage ROP are marked by subtle and
often difficult-to-detect characteristic changes [4,22]. B) The diversity and com-
plexity of disease phenotypes in infants require a model capable of extracting
more distinct and comprehensive features. C) The imaging heterogeneity in CFP
further complicates effective feature extraction.

To extract more discriminative features, it is essential to accurately perceive
the detailed structure of retinal images. According to the retinex theory [14],
the detailed structure of the retina is concentrated in the high-frequency domain
of the retinal image, whereas the style texture of the image is concentrated in
the low-frequency component. In recent years, spectral knowledge has garnered
increasing attention in the diagnosis of retinal diseases [16]. Li et al. [15] pro-
posed GFE-Net, which utilizes image frequency information to extract robust
structural perception representations, particularly from degraded images. Fur-
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thermore, studies [29, 30] have shown that domain shift [11] between the source
domain and target domain can be mitigated by integrating or exchanging low-
frequency spectrum components. To address domain shift in optic disc and cup
segmentation, Chen et al. introduced VPTTA [3], a visual prompt-based test-
time adaptation method. VPTTA adapts to each test image by training specific
low-frequency prompts that effectively capture image style and texture.

To address the challenges of automatic diagnosis of ROP, we propose a
structure-aware bidirectional proxy interaction network (SABPI-Net), which ex-
plicitly models the structural information of CFP images and leverages proxy
interaction mechanisms to enhance feature representation capabilities, thereby
achieving accurate recognition of ROP. Our main contributions include: 1) To
address pathological diversity (challenges A and B), we design a high-frequency
mapping branch. This branch is integrated with the trunk encoding branch via
a proxy interactive attention module, improving the model’s ability to capture
detailed retinal structures. 2) To mitigate imaging heterogeneity (challenge C),
we propose a domain-agnostic embedding space self-matching strategy, ensuring
consistent model performance across different imaging styles. 3) We construct a
dataset of over 170,000 CFP images, enabling the classification task related to
ROP. This dataset surpasses existing studies in both scale and disease coverage
in infants. Code is available at https://github.com/SB-Chen/SABPI-Net.

2 Method

The proposed SABPI-Net is shown in Fig.1. The high-frequency mapping (HFM)
branch focuses on the high-frequency components of the CFP images, and the
trunk feature encoding (TFE) branch of the CFP images interacts with the HFM
branch through the proxy interaction attention module (PIAM) to enhance the
model’s perception of the detailed structures of the retinal. The domain-agnostic
embedding space self-matching (DAESSM) learning facilitates the model to
maintain consistent performance under various retinal image styles.

2.1 High frequency mapping

Based on the Retinex theory [14] , the high frequency region of the fundus
image contains the most important details of the retina. In clinical diagnosis,
the characteristic changes of retinal diseases are usually identified by observing
the detailed structure of the retina (such as retinal blood vessels, macular area
and optic disc area). Therefore, the ability of the model to finely perceive the
detailed structure of retinal images is critical to the extraction of discriminative
features. To effectively extract the high-frequency components of the retinal
region and eliminate interference from irrelevant background areas, the invalid
regions are filled with the median value of the image to prevent their impact on
subsequent calculations, which is defined as follows:

xp = M(z) x x4+ (1 — M(x)) x (median(z) + a), (1)
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Fig. 1. Overall framework of the proposed SABPI-Net. The architecture incorporates
standard hierarchical transformer blocks in Blocks 1 to 4.

where z represents the CFP image, M(z) represents the corresponding fundus
region mask. On the basis of the median, increasing the offset o can avoid the
median filling being too smooth and enhance the contrast of high-frequency fea-
tures. In this study, « is set to 0.2. Subsequently, a Gaussian convolution kernel
is employed for the convolution operation to extract low-frequency components.
The high frequency components of the input image are calculated as follows:

F(zp) = (clamp(zp — xp * g(r,0),—1,1) + 1) - M(z) — 1, (2)

where F is a high-frequency mapping function, clamp is a value clipping function,
and g is a Gaussian filter with a kernel of (r, o).

2.2 Proxy interaction attention module

For an input with N tokens that can be represented as € RV*¢ | in each head,
the self-attention query, key, and value matrices can be formulated as follows:

Q=zWqy, K=2zWgk, and V =azWy, (3)

where Wo, kv € RE*¢ are projection matrices, Q, K,V € R¥*¢ and C and d
are the embedding dimension of modules and each head, respectively. In order
to facilitate subsequent analysis, the superscripts m and h are used to denote
the variables of the TFE branch and the HFM branch, respectively. A straight-
forward pooling strategy is applied to the query Q™, thereby yielding the high-
frequency proxy tokens that interact with the HFM branch: P = pooling(Q™),
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where P € RV*®? (Cp denotes the number of high-frequency proxy tokens. The
PIAM uses high-frequency proxy tokens to aggregate high-frequency detail in-
formation from the HFM branch and distribute it to individual image tokens in
the TFE branch. Specifically, P is taken as the query and the Softmax attention
computation is performed between P, the key K", and the value V" to aggre-
gate the high frequency feature Fp. Subsequently, utilising P as the key and Fp
as the value, in conjunction with the query Q™, a secondary Softmax attention
computation is performed. This process disseminates the high frequency detail
information from the proxy high frequency feature to each query token in the
TFE branch. We set the Cp to a small hyperparameter, which can be signifi-
cantly smaller than the number of query tokens. Based on these designs, PITAM
can be formalized as:

Op = a(Q™PT 4 By) [o(P(K")T) + B)) V" + DWC(V™), (4)

where B; € REP*N By € RVXCP are the bias terms of high frequency proxy,
o(-) represents the softmax function, and DWC' is the depthwise convolutional
module. The integration of high-frequency proxy bias terms can make better
use of the location information, thereby enabling different high-frequency proxy
tokens to concentrate on distinct high-frequency regions through the incorpo-
ration of spatial information into Softmax attention. In order to alleviate the
effect of insufficient feature diversity [8], the DWC is utilised to introduce the
V™ thereby enhancing the feature diversity. Ultimately, the features at each
block of the TFE branch are fused with the high-frequency proxy features from
the output of PIAM before proceeding to the next block of feature extraction.

2.3 Self-matching in a domain-agnostic embedding space

A memory bank-based low-frequency component replacement strategy is pro-
posed to simulate the low-frequency components of the transformed training
images. The memory bank is constructed on the low-frequency components of
preceding training samples and updated using a first-in-first-out strategy. The
memory bank, designated as M, is responsible for storing the low-frequency com-
ponents {f 15, of S training images. The Fast Fourier Transform and Inverse
Fast Fourier Transform operations are denoted by F(-) and F~1(-) respectively,
while the amplitude and phase components are denoted by F4(:) and FF(.).
To attain a transformed image that aligns with the current training image, it
is necessary to initially extract the low-frequency component Fii, (X;) of the
current training image. It is noteworthy that the amplitude component in F4(-)
has been shifted towards the centre. We use the Euclidean paradigm to compute
the similarity between Fl‘;‘w(Xi) and each low-frequency component f; = in the
memory bank. The similarity scores are then ranked, and the F73, (X;) of the
original image is replaced with the lowest similarity low-frequency component.
This process forms a matching alternative stylistic texture image, X;:

X; = FH([swap(FA(X), min(sim(Fiy, (X0), { fivu You))), F (X)) (5)
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In order to achieve stable performance of retinal disease diagnosis across imaging
styles, we used cosine similarity to calculate cross-stylistic texture correlations:

Zi (Z7)"
Xt = [z T 0
where Z;,Z; € R8¢ denote the matched X; and X} output features after image
encoder respectively, b denotes the batch size and C' is the feature embedding
dimension. The objective is to ensure the consistency of the semantic relationship
between the image features of X; and X. The optimisation objective of self-
matching in the domain-agnostic embedding space can be formulated as follows:

AC?ﬂatch =1- mean(RXi,Xf) (7>

We adopt the cross-entropy loss function as the training objective for the clas-
sification task. Therefore, the final training objective function is the weighted
sum of all loss functions.

N C
1 .
L= N ; ; Yij 108(9i5) + Almatch (8)
where A is the weight of the loss L,,4tcn, Which is set to 0.01 in this paper.

3 Experiments

Dataset and Implementation Details. This study collate data from 13,314
patients undergoing ROP screening at Shenzhen Eye Hospital, resulting in a
dataset of 174,540 CFPs categorized as: normal (112,770), laser treated ROP
(29,442), any stage of ROP (19,513, encompassing Stages 1-5 of ROP), A-ROP
(2,363), and other (10,452, representing infant retinal diseases other than ROP).
It is divided into training, validation, and test sets at a ratio of approximately
7:2:1 at the patient level. All training is performed on NVIDIA 4090 GPUs. The
initial learning rate is set to 0.001, and a cosine annealing schedule is employed.
The default optimiser employed is SGD, with a momentum setting of 0.9. The
weight decay parameter is set to le-4. The number of training epochs is 100.
The image data is uniformly resized to 224 x 224 pixels before being fed into the
model for training. During the training process, data enhancement techniques
such as random cropping, scaling, horizontal flipping and vertical flipping are
sequentially applied. We also validate in the public dataset OIA-ODIR [17].

Comparision with State-of-the-Arts. Table 1 reports the classification per-
formance of the proposed SABPI-Net with seven SOTA models in the in-house
ROP and OIA-ODIR datasets. The proposed SABPI-Net outperforms other
methods on all metrics for both the in-house and OIA-ODIR datasets. As shown
in Fig.2, the majority of models demonstrate high sensitivities within the Nor-
mal, Laser-treated ROP and Any Stage of ROP. However, sensitivities within
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Fig. 2. Comparison of confusion matrix diagram of different methods.

the A-ROP and Other are significantly lower. For instance, ConvNeXt-S demon-
strates a sensitivity of 10.26% on A-ROP, while the highest sensitivities observed
in the A-ROP and Other within the SOTA methods are 41.99% and 68.65%. It
is noteworthy that the SABPI-Net demonstrates significantly higher sensitivity
in the A-ROP and Other, with 61.54% and 74.52%, respectively. With the ex-
ception of the Normal, SABPI-Net attains the highest level of sensitivity among
all other categories.

Table 1. Comparison results on different methods

In-house dataset | OIA-ODIR[17]
Method Acc AUC Pre Sen F1 Spec Kappa\ Acc AUC Sen Spec
ResNet50(9] 90.96 96.85 67.92 64.21 65.48 96.50 83.58 | 58.52 81.89 49.62 92.54
ViT-B[5] 91.19 97.34 85.80 68.09 71.48 96.61 84.05|58.76 85.90 49.22 92.63

Conformer-S[21] 91.98 97.42 78.50 77.41 77.84 97.50 86.01 |58.10 84.06 48.65 92.30
RETFound[33] 92.30 97.74 81.03 70.57 73.25 97.23 86.23 |61.40 86.03 49.10 92.75
ConvNeXt-S[19] 92.81 98.05 84.24 70.06 72.31 97.42 87.16 |55.28 81.70 45.81 91.72
FIT-Net|2] 92.59 97.57 86.03 72.50 76.89 97.05 86.60 |60.14 84.76 49.37 92.76
Swin-S[18] 93.07 98.15 86.51 76.30 80.17 97.41 87.59 |60.62 85.21 50.15 92.87
Our 95.32 99.23 87.22 85.03 86.03 98.54 91.82|63.57 88.71 50.28 93.23

Ablation Study. Table 2 shows the results of the ablation studies of different
modules in SABPI-Net. We first examine the impact of DAESSM learning on
the model. It is found that the introduction of DAESSM improves the overall
Acc by 1.1%. Next, we introduce the HFM branch and implement the interac-
tion between the HFM branch and the TFE branch through the PIAM. And the
introduction of HFM and PIAM can improve the overall Acc by 1.23%. Finally,
when DAESSM, HFM and PIAM are combined, it is found that the overall Acc
can be further improved, with Acc improvements of 2.18%. To investigate the
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Table 2. Ablation study experiments

Module ablation \Low—frequency sizes in DAESSM learning
HFM PIAM DAESSM Acc AUC F1 Spec \Method Acc AUC F1 Spec

93.14 98.35 78.88 97.32|Baseline 93.14 98.35 78.88 97.32
v 94.24 99.11 84.70 97.78| S12  93.45 98.69 77.67 97.76
94.37 98.84 85.15 98.01 S6 93.60 98.64 82.10 97.69
v 95.32 99.23 86.03 98.54 S3 94.24 99.11 84.70 97.78
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Fig. 3. (a) Comparison of Grad-Cam visualisation results with and without HFM
branch. (b) Applying PIAM at different blocks of the Baseline.
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Fig. 4. Transformation of the image style texture after replacing the low-frequency
components of different sizes.

impact of PIAM at different blocks, an ablation study is conducted. As demon-
strated in Fig. 3(b), the model’s Acc undergoes a progressive enhancement as the
number of blocks employing PIAM increases. The application of PIAM to facili-
tate interaction between the two branches at all four blocks results in the model
achieving optimal performance. To assess the impact of low-frequency compo-
nent replacement sizes, we conduct ablation experiments. As shown in Table 2,
the model’s Acc slightly decreases as the replacement size increases. Further-
more, as illustrated in Fig. 4, when the replacement size is set to S3, the style
texture transformation achieves the best effect. However, as the size increases,
the image’s detailed information gradually becomes blurred, potentially altering
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the original structure (e.g., shifting the optic disc area), which is an undesired
outcome. Consequently, S3 is selected as the optimal replacement size. To further
elucidate the model’s decision-making process, we employed Grad-CAM to gen-
erate heatmaps highlighting the regions in the input images that contribute most
significantly to a specific class prediction. As shown in Fig. 3(a), the addition of
the HFM branch enables the model to better perceive detailed structures in the
retinal region and focus more precisely on disease lesion locations. Conversely,
without the HFM branch, the model’s sensitivity to subtle details diminishes,
leading to an inability to focus on the actual lesion location for certain diseases.

4 Conclusion

This paper proposes SABPI-Net, a diagnostic model for ROP trained on a large-
scale dataset of over 170,000 color fundus photographs, representing the most
extensive ROP dataset to date. Comprehensive experiments demonstrate that
SABPI-Net achieves exceptional performance in ROP classification tasks, high-
lighting the significant potential of Al-based models utilizing CFP for early
screening and diagnosis of retinal diseases in infants.
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