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Abstract. Automatic prediction of dose distribution maps wields considerable 

influence in clinical radiotherapy treatment. Recently, deep learning-based ap-

proaches have been explored to automatically predict the dose map from structure 

images and obtain promising results. However, these methods mainly focus on 

extracting anatomical features from CT and organ masks, ignoring abundant vis-

ual knowledge inherent in the domain of dose map. To address this limitation, 

we innovatively propose a visual prompt-guided dose prediction model, named 

ViPDose, to effectively predict radiotherapy dose distribution for cancer patients. 

Specifically, our ViPDose is structured with two key stages: 1) a prompt pre-

training stage and 2) a prompt generation stage. In the pre-training stage, we train 

a prompt encoder to encode dose maps alongside structure im-ages into compact 

prompt vectors. Then, in the prompt generation stage, we design a fast prompt 

generator fulfilled with a diffusion adversarial network (DAN) to efficiently pro-

duce the prompt vectors that closely approximate those generated by the prompt 

encoder, thus enriching the model with abundant visual prompt information. By 

adopting DAN in such highly compressed latent space, our method can guarantee 

high-quality predictions with relatively low computation costs. Comprehensive 

experiments on a clinical rectal cancer dataset with 130 cases have verified the 

superior performance of our method over other state-of-the-art methods. 
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1 Introduction 

Radiotherapy serves as a crucial non-surgical treatment for fighting cancers [1]. To 

ensure curative potency, a clinically acceptable radiotherapy plan needs to exert a high-

energy prescription dose on planning target volume (PTV) while sparing surrounding 

organs at risk (OARs) from radiation-induced harm. To reach this, the dosimetrists have 

to engage in iterative clinical trials and manual parameter optimization through a cum-

bersome trail-and-error process, unavoidably causing treatment delays [2]. Besides, po-

tential differences in expertise among dosimetrists may result in undesirable curative 

inconsistency. Consequently, automatic dose prediction techniques have garnered sig-

nificant attention for expediting and standardizing the plan-making procedures [3-4]. 

Nowadays, with the spectacular developments of deep learning (DL) in various med-

ical fields [5-8], DL-based dose prediction methods have been introduced to automati-

cally predict the dose distribution maps from several structure images, i.e., Computed 

Tomography (CT) scans and segmentation masks of PTV and OARs. The predicted 

dose distribution can help the physicians to derive objectives parameters with less op-

timization iterations in treatment planning system (TPS), finally gaining executable 

configurations. These methods are generally divided into two categories: regression-

based methods [9-15] and generative-based methods [16-18]. For the regression-based 

ones, UNet [19] has been widely employed with various innovative modules for achiev-

ing dose prediction tasks [10-13]. For example, Tan et al. [10] introduced two related 

tasks, i.e., isodose line prediction and gradient map prediction, to assist the main dose 

prediction task to gain higher dose accuracy. Wang et al. [12] proposed the PRUNET 

to progressively refine the dose prediction of prostate cancer. Jiao et al. [9] introduced 

the GCN into dose prediction task. Despite their promising accuracy, these regression-

based methods confront unavoidable blurry predictions with insufficient high-fre-

quency information which may reveal the ray directions and dose attenuation [18]. 

To maintain the high-frequency details, generative-based methods have emerged as 

effective solutions. Based on generative adversarial networks (GANs) [21], complex 

image statistics can be implicitly learned, thus gaining perceptually realistic predictions 

with more sharp patterns [16-17]. More recently, the diffusion model (DM) [22] stands 

out as another powerful generative model that does not rely on any additional assump-

tions about target data distribution [23-25]. In this vein, Feng et al. [18] presented a 

diffusion-based dose prediction method (DiffDP) and used an iterative denoising pro-

cess to produce high-quality dose maps. Nevertheless, due to the significant difference 

between input images and the output dose maps, existing DL-based methods [9-19] 

mainly focus on extracting anatomical features only from the input CT image and organ 

masks while overlooking the important knowledge in dose map. Such knowledge from 

dose map is of great potential to boost the prediction network learning the nonlinear 

relationship between the structure images and final dose distribution. Besides, the en-

hancement of current DM-based methods (e.g., DiffDP) come at the cost of heavy com-

putational burden due to the multiple denoising iterations and high input resolution [26] 

which seriously restricts the practical applications of DMs in dose prediction tasks. 

In this paper, we innovatively propose Visual Prompt-guided Dose prediction model 

with a diffusion adversarial network (DAN), named ViPDose, to achieve accurate dose 
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distribution for radiotherapy. Unlike most previous methods that rely solely on patients’ 

structure images and attempt to learn the direct mapping from structure images to dose 

maps without any prior of their underlying data distribution, our method incorporates 

knowledge in dose map as visual prompt to facilitate more reliable prediction. Specifi-

cally, the whole framework contains a prompt pretraining stage and a prompt genera-

tion stage. Different from merely using the real dose map to constrain the predicted one 

in the output level, we design the prompt pretraining stage and train a prompt encoder 

to directly compress dose map (i.e., ground truth) along with the structure images into 

compact prompt vectors. Such prompt vectors can guide the main prediction network 

to reach a more accurate dose prediction. However, such essential prompt information 

extracted from the real dose map is inaccessible in the inference, so we design the 

prompt generation stage to train a prompt generator to produce such prompts. Con-

cretely, we fix the parameters of the prompt encoder and the prediction network, and 

then train a DAN, which is modified from DDGAN [27], to efficiently produce the 

prompt vector as approximated to that from prompt encoder as possible, thus explicitly 

learning the data distribution of the dose maps. Finally, in the inference, input with the 

structure image, the DAN generates the corresponding prompt vector through a reverse 

process and guides the prediction network to predict the dose maps for cancer patients. 

Different from traditional DMs, ViPDose has two advantages: (i) ViPDose uses a mod-

ified DDGAN [27] as prompt generator where adversarial training is used to enlarge 

step size and enhance both the training and inference process; (ii) ViPDose is devised 

to the highly compact latent space, notably reducing the computational burdens with 

smaller input resolution. 

In summary, the main contributions of this work can be concluded into three-fold as 

follows: (1) We present a novel visual prompt-guided dose prediction model to fully 

explore the prompt knowledge about dose distribution to reach effective dose prediction 

of rectal cancer. (2) We innovatively design a fast prompt generator with adversarial 

training to model the data distribution of the prompt vector in the latent space, ensuring 

the prediction quality with a much lower computational cost. (3) Extensive experiments 

on a clinical dataset with 130 rectal cancer patients have confirmed the superior perfor-

mance of our method compared to other state-of-the-art (SOTA) approaches. 

 

Fig. 1. Illustration of the proposed ViPDose framework. 
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2 Methodology 

The overview of ViPDose is illustrated in Fig. 1 which contains (A) a prompt pretrain-

ing stage and (B) a prompt generation stage. Stage (A) trains a prompt encoder 𝐸𝑝 to 

effectively encode the structure images and dose map (i.e., ground truth) into com-

pressed prompt vector which can guide the prediction network 𝑃 to complete dose map 

generation. Then, Stage (B) trains a DDGAN only conditioned on structure images to 

generate prompt vector in the latent space and guide the dose map reconstruction. For 

the effectiveness of prompt generation, the feature-level and image-level reconstruction 

constraints are designed to associate with the adversarial loss for network optimization. 

2.1 Prompt Pre-training 

Prompt Encoder. To extract the beneficial prompt knowledge of the dose map, we 

design a prompt pre-training stage, as depicted in Fig. 1(A), to train a prompt encoder 

𝐸𝑝 for compressing the dose map (i.e., ground truth) into compact feature vectors. We 

denote an image set of a patient as {𝑥, 𝑦} where structure images 𝑥 = (𝑥𝐶𝑇 , 𝑥𝑆𝑀) con-

tains CT 𝑥𝐶𝑇 ∈ ℝ1×𝐻×𝑊 (𝐻 for height and 𝑊 for width) and binary masks of PTV and 

OARs 𝑥𝑆𝑀 ∈ ℝ(𝑂+1)×𝐻×𝑊 (𝑂 is the number of OARs), and 𝑦 ∈ ℝ1×𝐻×𝑊 is the ground 

truth. Later, we concatenate 𝑦 with structure images 𝑥 along the channel dimension 

which is then fed into 𝐸𝑝 to form a prompt vector 𝑓𝑝 ∈ ℝ𝐶′
 (𝐶′ for channel numbers). 

Prediction Network. We design a five-level U-Net-like prediction network 𝑃 for pre-

dicting the dose map 𝑦̃. , where the conventional convolution blocks are replaced by 

modulation convolution blocks (MCBs). Specifically, as displayed in Fig. 1(C), MCB 

fuses 𝑓𝑝 with the dose feature 𝑓𝑑 (extracted by the prediction network from the structure 

image 𝑥) in multiple levels. For the 𝑙-th encoding or decoding level, MCB uses two 

Conv-LeakyReLU-Conv groups to map 𝑓𝑝 into two modulation parameters, i.e., 𝜇 and 

𝜈, which share the same channel numbers with dose feature 𝑓𝑑
𝑙. Subsequently, 𝜇 and 𝜈 

are integrated with the dose feature 𝑓𝑑
𝑙 for gaining the fused feature 𝑓𝑑

𝑙 with scaling and 

shifting transform. This process can be formally described as below: 

𝑓𝑑
𝑙 = 𝑓𝑑

𝑙 ⊙ 𝜇 + 𝜈, 

𝑓𝑑
𝑙 = 𝐶𝑜𝑛𝑣(𝑆𝑤𝑖𝑠ℎ(𝐵𝑁(𝑓𝑑

𝑙))), 
(1) 

(2) 

where 𝐶𝑜𝑛𝑣(∙), 𝑆𝑤𝑖𝑠ℎ(∙), and 𝐵𝑁(∙) are the convolution layer, swish activation func-

tion, and batch normalization layer, respectively. With spatial dimensions maintained, 

MCB can obtain both spatial-wise transformation and feature-wise manipulation. Then, 

we feed 𝑓𝑑
𝑙 into another Conv-Swish-BN group and add it to the original 𝑓𝑑

𝑙 with resid-

ual connection, gaining the dose feature 𝑓𝑑
𝑙+1 for the next encoding or decoding level: 

𝑓𝑑
𝑙+1 = 𝐶𝑜𝑛𝑣 (𝑆𝑤𝑖𝑠ℎ (𝐵𝑁(𝑓𝑑

𝑙))) + 𝑓𝑑
𝑙, (3) 

To guarantee the effectiveness of the prompt encoder 𝐸𝑝 in extracting prompt vec-

tors, we optimize 𝐸𝑝 and the prediction network 𝑃 with the dose loss 𝐿𝑑 which evalu-

ates the difference between the prediction 𝑦̃ and its ground truth 𝑦 as follows: 
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𝐿𝑑 = ‖𝑦 − 𝑦̃‖1, (4) 

2.2 Prompt Generation 

After the prompt pre-training stage, the well-trained prompt encoder 𝐸𝑃 and prediction 

network 𝑃 are obtained. Since the prompt vector is extracted from the real dose map 

which is inaccessible in the inference, we design a fast prompt generator to synthesize 

the prompt merely under the condition of structure images. Inspired by DDGAN [27], 

the prompt generator, i.e., DAN, incorporates DM and adversarial training to enlarge 

the step size of DM. To force the prompt generator to synthesize more reliable prompts, 

dual-level reconstruction constraints are devised to better optimize the whole network. 

Diffusion Framework. Given the structure images 𝑥 and dose map 𝑦, the pre-trained 

and parameter-fixed 𝐸𝑝 converts them into the prompt vector 𝑓𝑝 ∈ ℝ𝐶′
. Then, we uti-

lize a DAN to generate the prompt vector to be approximated to 𝑓𝑝. Consistent with 

DM, the diffusion framework of DAN involves a forward process and a reverse process. 

The forward process produces a series of noisy prompt vectors {𝑓𝑝
0, 𝑓𝑝

1, … , 𝑓𝑝
𝑇}, 𝑓𝑝

0=𝑓𝑝 

by progressively exerting a small amount of noise to 𝑓𝑝 in 𝑇 steps with the noise in-

creased at each step until it becomes a standard Gaussian noise at step 𝑇 [22]. Given 

𝑓𝑝
0~𝑞(𝑓𝑝

0), the forward process is formulated as: 

𝑞(𝑓𝑝
𝑡 ∣ 𝑓𝑝

𝑡−1) = 𝒩(𝑓𝑝
𝑡; √𝛼𝑡𝑓𝑝

𝑡−1, (1 − 𝛼𝑡)𝐼), 𝑡 = 1, 2, … , 𝑇, (5) 

where 𝛼1:𝑇 is the constant variance schedule of the noise added to 𝑓𝑝
𝑡−1. Denoting 𝛾𝑡 =

∏ 𝛼𝑖
𝑡
𝑖=1 , 𝑓𝑝

𝑡 at any time step 𝑡 can be sampled by: 

𝑓𝑝
𝑡 = √𝛾𝑡𝑓𝑝

0 + √1 − 𝛾𝑡𝜀𝑡 , 𝜀𝑡~𝒩(0, 𝐼) (6) 

where 𝒩(0, 𝐼) represents the standard Gaussian distribution. In this procedure, the gen-

erator 𝐺 , i.e., the composite function of conditional encoder 𝐸𝑐  and denoiser 𝑆 , is 

trained to predict an intermediate prompt vector 𝑓𝑝,𝑖𝑛𝑡
0 = 𝐺(𝑓𝑝

𝑡 , 𝑡, 𝑥) for the correspond-

ing step 𝑡, under the guidance of structure images 𝑥. 

The reverse process gradually converts the latent distribution 𝑝(𝑓𝑝
𝑇) into 𝑝(𝑓𝑝

0) with 

the well-trained 𝐺, under the guidance of 𝑥. Beginning with a Gaussian distribution 

𝑓𝑝
𝑇 ∼ 𝒩(𝑓𝑝

𝑇|0, 𝐼), the reverse inference between two adjacent steps is expressed as: 

𝑓𝑝
𝑡−1 = √𝛾𝑡−1𝑓𝑝,𝑖𝑛𝑡

0 + √1 − 𝛾𝑡−1𝑧𝑡−1, 𝑧𝑡−1~𝒩(0, 𝐼) (7) 

where 𝑓𝑝,𝑖𝑛𝑡
0 = 𝐺(𝑓𝑝

𝑡 , 𝑡, 𝑥). Our parameterization of directly predicting 𝑓𝑝,𝑖𝑛𝑡
0  is not only 

equivalent to predicting 𝜀𝑡 in vanilla DMs [18], but also simplifies the following adver-

sarial training. Besides, our framework is applied to the highly compact feature level 

where its dimension is much smaller than conventional image-level DMs [18], thus 

effectively reducing the computational cost and enhancing the inference speed. 

Adversarial Training. Inspired by DDGAN [27], we modified the original diffusion 

framework into an adversarial version. The forward process in Eq. (5) requires a rela-

tively large 𝑇 and small step size to satisfy the Gaussian assumption on the denoising 

distribution, which results in severely low inference efficiency. When timesteps 𝑇 
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decreases, the real denoising distribution 𝑞(𝑓𝑝
𝑡−1 ∣ 𝑓𝑝

𝑡) turns to a more complex non-

Gaussian distribution. Therefore, we introduce adversarial training to model the com-

plex data distribution between 𝑓𝑝
𝑡−1 and 𝑓𝑝

𝑡 given a large step size 𝑡. 

In the adversarial training, the generator 𝐺  generates the predicted intermediate 

prompt vector 𝑓𝑝,𝑖𝑛𝑡
0  which is transformed into 𝑓𝑝

𝑡−1 through Eq. (7), while the discrim-

inator 𝐷  tries to discriminate whether the samples come from 𝑞(𝑓𝑝
𝑡−1 ∣ 𝑓𝑝

𝑡)  or 

𝑞(𝑓𝑝
𝑡−1 ∣ 𝑓𝑝

𝑡). The adversarial loss 𝐿𝑎𝑑𝑣 can be formulated as below: 

𝐿𝑎𝑑𝑣 = 𝐿𝑎𝑑𝑣(𝐺) + 𝐿𝑎𝑑𝑣(𝐷), (8) 

𝐿𝑎𝑑𝑣(𝐺) = 𝔼𝑞(𝑓̃𝑝
𝑡−1∣𝑓𝑝

𝑡) [−𝑙𝑜𝑔 (𝐷(𝑓𝑝
𝑡−1, 𝑡, 𝑓𝑝

𝑡))], (9) 

𝐿𝑎𝑑𝑣(𝐷) = 𝔼𝑞(𝑓𝑝
𝑡−1∣𝑓𝑝

𝑡) [−𝑙𝑜𝑔 (𝐷(𝑓𝑝
𝑡−1, 𝑡, 𝑓𝑝

𝑡))]

+ 𝔼𝑞(𝑓̃𝑝
𝑡−1∣𝑓𝑝

𝑡) [−𝑙𝑜𝑔 (1 − 𝐷(𝑓𝑝
𝑡−1, 𝑡, 𝑓𝑝

𝑡))], 
(10) 

Conditional Encoder and Denoiser. To guide the denoising procedure with anatomi-

cal knowledge, a conditional encoder 𝐸𝑐 is designed to extract the anatomical feature 

𝑓𝑐 from structure image 𝑥, i.e., 𝑓𝑐 = 𝐸𝑐(𝑥), (𝑓𝑐 ∈ ℝ𝐶′
). Besides, 𝐸𝑐 shares the same net-

work architecture with 𝐸𝑝 . It begins with a 3×3 convolutional layer, followed by 3 

down-sampling ResBlocks to reduce the spatial dimensions and a standard ResBlock 

to refine the features. The output is then transformed into a vector through average 

pooling and passed through two linear layers with LeakyReLU activations. 

Denoiser 𝑆 tries to reconstruct the clean prompt vector, i.e., 𝑓𝑝,𝑖𝑛𝑡
0 , when given the 

anatomical feature 𝑓𝑐, timestep 𝑡, and noisy prompt vector 𝑓𝑝
𝑡, i.e., 𝑓𝑝,𝑖𝑛𝑡

0 = 𝑆(𝑓𝑐 , 𝑡, 𝑓𝑝
𝑡). 

Concretely, 𝑓𝑐, 𝑡, and 𝑓𝑝
𝑡 are input with concatenation and 𝑆 employs a relatively sim-

ple network that only involves four identical Linear-LeakyReLU blocks. 

Dual-level Reconstruction Constraints. Obtaining the predicted clean prompt vector 

𝑓𝑝,𝑖𝑛𝑡
0 , we design dual-level (i.e., feature-level and image-level) reconstruction losses to 

collaboratively promote the reliability of prompts synthesized by the prompt generator. 

Concretely, given 𝑓𝑝,
0, we first use the following feature-level reconstruction loss 𝐿𝑟𝑒𝑐

𝑓
 

to measure the disparity between the predicted prompt vector 𝑓𝑝,𝑖𝑛𝑡
0  and its target 𝑓𝑝

0: 

𝐿𝑟𝑒𝑐
𝑓

= ‖𝑓𝑝
0 − 𝑓𝑝,𝑖𝑛𝑡

0 ‖
1

, (11) 

Furthermore, 𝑓𝑝,𝑖𝑛𝑡
0  is fed into the pre-trained and parameter fixed prediction network 

𝑃  to reconstruct dose map 𝑦̂ and we gain the following image-level reconstruction 

loss 𝐿𝑟𝑒𝑐
𝑖  for better image-level reconstruction consistency: 

𝐿𝑟𝑒𝑐
𝑖 = ‖𝑦 − 𝑦̂‖1, (12) 

Comprehensively, we derive the entire loss of the prompt generation stage as below: 

𝐿 = 𝐿𝑟𝑒𝑐
𝑖 + 𝜔1𝐿𝑟𝑒𝑐

𝑓
+ 𝜔2𝐿𝑎𝑑𝑣 . (13) 

where 𝜔1 and 𝜔2 are two weighted hyperparameters to balance the three terms.  
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Table 1. Quantitative comparison results with SOTA methods on PTV. The best results are 

marked in bold while the second-best ones are underlined. *: p < 0.05 via the paired t-test. 

Methods ∆𝐷95 (Gy)↓ ∆𝐷2 (Gy)↓ ∆𝐷𝑚𝑒𝑎𝑛(Gy)↓ ∆𝐶𝐼↓ Params (M) iteration 

U-ResNet-D 2.556±1.684* 1.043±0.383* 2.416±1.504* 0.087±0.127* 14.72 1 

MTDP 1.769±1.372* 0.692±0.493* 1.305±1.116* 0.070±0.140* 13.86 1 

PRUNet 1.531±1.955* 0.754±0.422* 0.959±1.465* 0.065±0.136* 25.42 1 

Mc-GAN 1.757±1.514* 1.004±0.458* 1.268±1.049* 0.083±0.150* 1.15 1 

TcTrans 1.599±1.565* 1.709±0.431* 1.427±1.029* 0.067±0.120* 94.07 1 

SR3† 2.902±1.227* 0.817±0.507* 1.771±0.764* 0.167±0.131* 16.53 100 

DiffDP 1.195±1.613 0.486±0.350* 0.780±1.180 0.068±0.131* 37.89 100 

ViPDose 1.208±1.721 0.292±0.219 0.732±1.238 0.062±0.128 15.65 4 
 

Table 2. Quantitative comparison results on OARs with regard to ∆𝐷𝑚𝑒𝑎𝑛(Gy). 

 Sin L.hf R.hf Bla 

U-ResNet-D 2.250±1.634* 3.558±2.660* 3.109±2.130* 2.694±1.582* 

MTDP 1.703±1.354* 2.383±1.826* 2.331±1.704* 2.118±1.545* 

PRUNet 2.071±1.768* 2.747±2.095* 1.986±1.450* 2.528±1.987* 

Mc-GAN 1.635±1.267 2.498±1.724* 2.128±1.836* 2.717±1.987* 

TcTrans 1.539±1.481 2.272±1.994* 2.076±1.570* 2.074±1.624* 

SR3† 1.476±1.168 1.977±1.811* 1.819±1.829* 1.399±1.050 

DiffDP  2.786±1.954* 3.072±2.683* 2.431±1.940* 1.852±1.584* 

ViPDose 1.498±1.422 1.763±1.404 1.456±0.823 1.338±1.149 

 
Fig. 2. The DVH curves for comparison with SOTA methods. Solid line represents the ground 

truth and dotted one represents the predicted dose maps. 

 

Fig. 3. Visual comparisons with SOTA methods. Top: dose maps, Bottom: error maps. 

Table 3. Ablation results with different model variants on PTV and OARs. 

Methods 
PTV R.hf Bla 

∆𝐶𝐼↓ ∆𝐷𝑚𝑒𝑎𝑛 (Gy)↓ ∆𝐷𝑚𝑒𝑎𝑛 (Gy)↓ ∆𝐷𝑚𝑒𝑎𝑛 (Gy)↓ 

 (A) 0.080±0.117 1.772±1.372 2.684±1.693 2.182±1.885 

 (B) 0.068±0.127 1.050±1.075 1.990±1.325 1.437±1.169 

 

在此处键入公式。 

(B)‡ 

 

0.074±0.113 1.383±1.527 2.495±1.698 1.955±1.445 

 (C) 0.062±0.132 0.793±1.254 1.734±1.099 1.389±1.236 

 (D) 0.062±0.128 0.732±1.238 1.456±0.823 1.338±1.149 
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MTDPU-ResNet-D PRUNET Mc-GAN

PTV

Sin

L.hf

R.hf

Bla

MTDP TcTrans SR3 DiffDP Proposed Ground TruthU-ResNet-D PRUNET Mc-GAN
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3 Experiments and Results 

Dataset Descriptions and Evaluation Metrics. We employ an in-house clinical rectal 

cancer dataset with 130 patients to verify the superiority of the proposed ViPDose. All 

the patients have taken VMAT in West China Hospital. For each case, the CT scan, 

segmentation masks of PTV and OARs, and the clinically approved dose map are con-

tained. The OARs involve small intestine (Sin), right head of the femur (R.hf), left head 

of the femur (L.hf), and bladder (Bla). We randomly choose 98/10/22 cases for training, 

validation and testing, respectively. 3D volumes with a resolution of 3mm×3mm×3mm 

are sliced along the axial direction, gaining 2D slices with a size of 160×160. Then, we 

introduce our evaluation metrics. For PTV, assigning 𝐷𝑥 to denote the minimal ab-

sorbed dose which covers x% volume of PTV, we involve 𝐷95, 𝐷2, and mean dose 

(𝐷𝑚𝑒𝑎𝑛) as metrics. For OARs, we take 𝐷𝑚𝑒𝑎𝑛  for performance evaluation. Also, the 

conformation index (CI) [28] is used. We calculate the average mean error (∆) for all 

quantitative metrics. Besides, the dose volume histogram (DVH) [29] is utilized. 

Implementation Details. All experiments are conducted on a single NVIDIA GeForce 

RTX 3090 GPU equipped with 24GB of memory. The two phases of ViPdose are both 

trained with 200 epochs with a batch size of 16. The Adam optimizer is utilized to 

promote efficient convergence. The learning rates of the two phases are set as 5e-6 and 

3e-6, respectively. The hyper-parameters 𝜔1 and 𝜔2 in Eq. (13) are empirically set as 1 

and 0.1, respectively. The iteration 𝑇 for the DAN is 4 for both training and testing 

Comparison Studies. To validate the performance of ViPDose, we comprehensively 

compare it with non-diffusion and diffusion-based methods. Non-diffusion methods 

comprise U-ResNet-D [11], MTDP [10], PRUNet [12], Mc-GAN [17], and TcTrans 

[9]; diffusion-based methods involve SR3 [23] and DiffDP [18]. Notably, SR3 is a clas-

sical DM for super resolution which serves as a baseline of image-conditional DM. 

Here, we adopt it to the dose prediction task for further comparison (marked by “†”). 

The quantitative results on PTV and OARs are reported in Table 1 and Table 2, respec-

tively. In Table 1, compared to non-diffusion methods, ViPDose gains notably better 

performance, especially obtaining 1.208Gy in terms of ∆𝐷95. Moreover, compared to 

the diffusion-based method DiffDP, ViPDose reaches higher accuracy for the rest three 

metrics. SR3 obtains the second-best accuracy on four OARs but our ViPDose still 

maintains its leading performance. The DVH curve in Fig.2 shows that our proposed 

ViPDose gains the smallest disparities to the ground truth for all organs which indicates 

its superiority. Visual comparisons with SOTA methods are given in Fig. 3 where the 

proposed method generates more realistic dose maps with the minimal error maps. Ta-

ble 1 also shows the relatively less parameters and iterations of the proposed method. 

Ablation Studies. The arrangements of ablation models are: (A) Prediction network 

without prompt as Baseline, (B) Baseline + Prompt generated by DM trained with fea-

ture-level reconstruction loss 𝐿𝑟𝑒𝑐
𝑓

 only (Baseline + Prompt), (C) Baseline + Prompt + 
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𝐿𝑎𝑑𝑣, and (D) Baseline + Prompt + 𝐿𝑎𝑑𝑣 + 𝐿𝑟𝑒𝑐
𝑖  (Proposed). As seen in Table 3, after 

gradually adding proposed components, the performance is progressively enhanced, 

verifying their respective contributions. Furthermore, we design an exploratory exper-

iment to additionally investigate whether DM has the superiority in generating prompt 

vectors compared to regression-based model. We train the denoiser to directly generate 

𝑓𝑝,𝑡
0  with only 𝐿𝑟𝑒𝑐

𝑓
 and denoted it as (B)‡. Compared to (B)‡, (B) gains higher accuracy. 

4 Conclusion 

In this work, we present ViPDose to utilize the visual prompt of dose maps to effec-

tively achieve automatic dose distribution in radiotherapy. We train the prompt encoder 

to compress the dose maps into prompt vectors in the prompt pre-training stage.  Then, 

we use a DAN to predict the prompt vectors during the prompt generation stage, thus 

fully exploring the dose distribution knowledge. Experiments on the clinical rectal can-

cer dataset have sufficiently verified its leading performance.  
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