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Abstract. Functional connectivity (FC) analysis is the primary ap-
proach for studying functional magnetic resonance imaging (fMRI) data,
focusing on the spatial patterns of brain activity. However, this method
often neglects the temporal dynamics inherent in the timeseries nature
of fMRI data, such as latency structure and intrinsic neural timescales
(INT). These temporal features provide complementary insights into
brain signals, capturing signal propagation and neural persistence in-
formation that FC alone cannot reveal. To address this limitation, we
introduce Prompt enhanced multimodal integrative analysis (PMIL),
a multimodal framework built on a transformer architecture that in-
tegrates latency structure and INT with conventional FC, enabling a
more comprehensive analysis of fMRI data. Additionally, PMIL lever-
ages text prompts within a state-of-the-art vision-language model to en-
hance the integration of INT with latency structure and FC. Our frame-
work achieves state-of-the-art performance on an autism dataset, effec-
tively distinguishing autistic patients from neurotypical individuals. Fur-
thermore, PMIL identified disease-affected brain regions that align with
findings from existing research, thereby enhancing its interpretability.
The code for PMIL is publicly available at https://github.com/gudtls17/
PMIL.

Keywords: fMRI analysis · temporal dynamics· vision-language model
· prompt tuning · autism spectrum disorder · functional connectivity.

1 Introduction

Functional magnetic resonance imaging (fMRI) measures blood oxygen level-
dependent (BOLD) signals, serving as a surrogate for neural signals. As 4-D
data comprising three spatial dimensions and one temporal dimension, fMRI
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data is referred to as an fMRI timeseries. Previous studies have explored neural
fluctuations through both spatial and temporal perspectives [13,15]. The pri-
mary analysis method for fMRI is functional connectivity (FC) analysis, which
evaluates the synchronicity among brain regions to describe spatial patterns of
brain activity [2,17,26]. While FC analysis has proven effective for numerous
downstream tasks, existing approaches underrepresent the temporal dynamics
of brain signals, though recent work increasingly addresses this aspect.

Temporal dynamics can be investigated through latency analysis, which mea-
sures delays or advances in the timeseries between brain regions [7]. This ap-
proach reveals the latency structure in brain signals and explains how brain
signals propagate at a macroscopic level. By analyzing latency, it is possible to
infer whether a signal in one region precedes a signal in another. In contrast,
FC analysis assumes synchronicity and is effectively zero latency. Together, FC
and latency structure analyses provide complementary insight into brain signals
[22,24]. Another approach to examining temporal dynamics is the intrinsic neural
timescale (INT), which measures the persistence of brain activity within a given
region, typically assessed using autocorrelation [25]. It is widely used to evalu-
ate functional specialization, as brain regions with longer timescales are better
equipped for higher-order information like decision-making [29]. Unlike latency
structure, INT reveals the intrinsic properties of individual regions rather than
interregional interactions, making it a valuable complement to latency analysis.

Existing machine learning methods for fMRI analysis have predominantly
focused on leveraging spatial patterns of FC for downstream tasks such as
disease classification and clinical score regression. However, they often fail to
fully utilize the complementary information provided by temporal dynamics
[22,23,1,19,21,4]. In this study, we address this gap by integrating temporal as-
pects, including latency structure and INT, into fMRI analysis for the classifi-
cation of autism spectrum disorder (ASD).

Recently, vision-language foundational models have led to significant ad-
vancements across various domains. These models have the potential to trans-
form fMRI analysis as well. While existing foundational models trained on non-
medical data are not directly applicable, medical vision-language models specif-
ically designed for brain regions and their properties such as BiomedCLIP [31],
offer a promising alternative [31,30,16]. In this work, we leverage BiomedCLIP
by developing tailored text prompts to enhance the integration of temporal dy-
namics with the conventional FC. Our work addresses two key challenges:

1. The limited use of timeseries data, often neglecting temporal dynamics.
2. The sparse use of textual description in fMRI data analysis.

To overcome these limitations, we introduce Prompt enhanced multimodal
integrative analysis (PMIL), a novel method for brain signal analysis built on
a transformer framework. Transformers are well-suited for our multimodal ap-
proach, as they naturally integrate diverse features. Our key contributions are:

1. We extend brain signal analysis to incorporate temporal dynamics, including
latency structure and INT, in addition to the spatial patterns of FC.
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Fig. 1. Overview of the PMIL model. Derived from fMRI timeseries, zero and
cross latency matrices are processed through their respective encoders. INT informa-
tion is transformed into textual description, which undergoes prompt tuning. This text
representation serves as a conditioning input for both encoders. The embedding from
the zero latency encoder is used to reconstruct the original input (zero latency) and
cross latency. Similarly, the embedding from the cross latency encoder is used to recon-
struct the original input and zero latency. Finally, the embeddings from both encoders
are merged and used for the downstream classification task. ASD: autism spectrum
disorder, TD: typically developing group.

2. We design text prompts that effectively integrate INT with conventional FC,
leveraging the capabilities of a recent vision-language model.

3. We demonstrate that our method outperforms existing baselines and high-
lights brain regions linked to ASD, thereby enhancing interpretability.

2 Method

2.1 Overview of the method

Using the pre-processed fMRI timeseries parcellated into N regions of interest
(ROIs) based on a given atlas, we construct the FC (zero latency) matrix, XZL ∈
RN×N by calculating Pearson correlation coefficients between ROI pairs and
temporal delay (cross latency) matrix, XCL ∈ RN×N by maximizing the cross-
correlation between different ROI pairs. Additionally, an INT (intrinsic latency)
vector, XIL ∈ RN×1, is calculated using the autocorrelation for each ROI. XIL

is further used to generate a textual description Xtext ∈ RN . The matrices
XZL and XCL serve as inputs to encoders EZL and ECL, respectively, with the
text representation X ′

text used as the conditioning input to generate embeddings
within each encoder. The outputs from the encoders, X ′

ZL and X ′
CLare used to

reconstruct the original cross latency matrix (Xrecon
CL ) and zero latency matrix

(Xrecon
ZL ). For cycle-consistent reconstruction, embeddings X ′

ZL are further used
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in encoder ECL to generate X ′
CL, which is then used to reconstruct Xcycle

ZL .
Similarly, starting from X ′

CL, the cycle reconstruction yields Xcycle
CL . Finally, the

embeddings from the zero and cross latency encoders are merged and passed
through a pooling layer followed by multi-layer perceptrons (MLPs) to perform
the classification task (see Fig. 1).

2.2 Computation of latency structure

Generating latency structure We measure the relationship between fMRI
timeseries of two brain regions for both spatial and temporal perspectives. Given
fMRI timeseries ∈ RN×t where t represents the number of timepoints across N
brain regions, the ij-th element of zero latency matrix XZL is given by

ri,j = pearson correlation(timeseriesi, timeseriesj), i, j ∈ 1, 2, ..., N (1)

Following established protocols for investigating latency structure [22,24], the
ij-th element of cross latency matrix XCL is given by

Ci,j(τ) = argmax
1

T

∫
timeseriesi(t+ τ) · timeseriesj(t)dt, i, j ∈ 1, 2, ..., N (2)

We used τ as the element of XCL that maximized Ci,j(τ), where T is the length
of the fMRI scan. Each element of XIL is computed using the autocorrelation of
a given brain region by making the region indices i and j the same in eq (2). It is
computed as τ when Ci,j(τ) is approximately 0. In other words, XIL represents
the rate at which the autocorrelation of a brain region decays.

Generating text description To utilize the rich information in pretrained
vision-language models, we generate a text description Xtext from the intrinsic
latency vector XIL. Since the range of values carries more significance than
specific values and can be effectively represented as a low-dimensional vector,
we design practical text descriptions. To emphasize regions with strong FC,
we retained the top 5% of connections in the zero latency matrix and further
selected regions with the top 5% row-wise sum values [3,14,27]. These regions
were then used to generate the text descriptions like "<short> timescales <right
medial frontal region>". Consistent with prior research [3,14,27], we categorized
intrinsic latency values shorter than 3 seconds as ‘short’, between 3 and 5 seconds
as ‘intermediate’, and longer than 5 seconds as ‘long’.

2.3 Encoders, decoders, and embeddings

Encoder for latency representation A standard transformer decoder layer
is used to generate embeddings (X ′

ZL and X ′
CL) for the two input types [28]. The

zero latency matrix serve as the input to encoder EZL, while the cross latency
matrix is used as the input to encoder ECL, along with text representation
X ′

text. The output of BiomedCLIP pretrained word embedding tokenizer and
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text encoder are used to generate text representation X ′
text. This representation

facilitates both EZL and ECL by providing additional contextual information
for k-selected regions associated with INT. To enhance the quality of the text
representation, prompt tuning is applied, incorporating a prompt token p.

X ′
text = Etext([p,Word embedding(Xtext)]), X ′

text ∈ Rk×N (3)

X ′
ZL = EZL(XZL, X

′
text), X

′
CL = ECL(XCL, X

′
text) (4)

Decoder layer for reconstruction A standard transformer decoder layer was
used for the decoder layer. Since the zero latency matrix and cross latency matrix
are physically related [22,24], we use decoders DCL and DZL to reconstruct one
matrix from the embedding of the other, thereby strengthening their interactions
(eq. 5). However, if the embeddings are used solely for single-directional recon-
struction, the features may become biased. To address this, embeddings from
one type are encouraged to generate embeddings of the other type, followed by
a reconstruction back to the original input type, completing a cycle-consistent
reconstruction (eq. 6) [32]. That is X ′

ZL is passed through to ECL and subse-
quently DZL to reconstruct Xcycle

ZL . The same applies to X ′
CL.

Xrecon
CL = DCL(X

′
ZL), X

recon
ZL = DZL(X

′
CL) (5)

Xcycle
ZL = DZL(ECL(X

′
ZL, X

′
text)), X

cycle
CL = DCL(EZL(X

′
CL, X

′
text)) (6)

Merging embeddings and readout layer We adopt a learnable weighted
sum to determine the optimal proportion for merging two embeddings (eq. 7).
Both latency types are structured as region-by-region graphs. To process these,
we apply the OCRead layer, which is specifically designed for graph-based data
by soft-clustering token embeddings and projecting them orthogonally to pro-
duce meaningful graph-level embeddings. This method outperforms class token
approaches [1,19]. The resulting embeddings are then passed through MLPs for
classification.

Xmerge = λX ′
ZL + (1− λ)X ′

CL (7)

2.4 Loss function

We employ tailored loss functions for different model objectives. Mean squared
error (MSE) for reconstruction (Lrecon), L1 loss for cycle consistency reconstruc-
tion (Lcycle), and cross-entropy loss for the classification prediction (Lpred). The
total loss function is defined as L = λ1Lrecon + λ2Lcycle + λ3Lpred.

3 Experiments

3.1 Datasets and experimental settings

Dataset We evaluated our method using the publicly available fMRI dataset
on ASD, Autism Brain Imaging Data Exchange (ABIDE) [9]. This dataset ag-
gregates data from 17 international sites and has been preprocessed using the
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Table 1. Quantitative diagnosis prediction results of our method compared with base-
line models (Mean±standard deviation). V&L: Vision and Language.

Model Category Accuracy AUROC Sensitivity Specificity
BrainNetCNN(NImg17) [20] Vision 66.6±2.1 72.0±3.0 72.9±7.0 59.3±10.0
FBNETGNN(MIDL22) [18] Vision 66.8±1.3 73.5±0.7 68.3±5.0 65.1±5.2

BNT(NeurIPS22) [19] Vision 73.4±2.0 81.5±1.3 79.8±6.2 66.0±11.2
Com-BrainTF(MICCAI23) [1] Vision 72.1±3.4 81.1±2.5 79.8±3.1 64.0±6.9

Ours V&L 75.9±1.9 83.4±0.5 79.6±3.7 71.2±3.4

Fig. 2. The interpretation of the ROI-level importance. (a) illustrates the top
10% important regions in predicting ASD. (b) illustrates brain regions assigned to brain
functional communities. (c) demonstrated the cognitive decoding of brain regions.

Configurable Pipeline for the Analysis of Connectomes (CPAC) software [7].
Brain regions were parcellated using the Craddock 200 atlas [8]. We use a total
of 1009 participants, of whom 516 (51%) were diagnosed with ASD. Given the
multi-site nature of the dataset, with data collected using various scanners and
acquisition parameters, we implemented techniques to mitigate site variability.
First, covariate control was applied to adjust for site effects, as well as partici-
pant age and sex, across FC (zero latency), temporal delay (cross latency), and
INT (intrinsic latency) [12]. Second, a stratified sampling strategy was imple-
mented during the training-validation-test split to maintain the ratio of ASD to
typically developing participants across different collection sites [1,19].

Implementation Details All models were implemented in PyTorch and trained
using NVIDIA RTX 4070 TI (12GB). Each transformer layer was configured with
4 attention heads. The Adam optimizer was used, with an initial learning rate of
10−4 and a weight decay of 10−4. The batch size was set to 32, and the dataset
was split into training, validation, and test sets in a ratio of 7: 1: 2. We empir-
ically set λ1 and λ2 to 0.1 and λ3 to 1. Training was conducted over 50 epochs
and the model achieving the highest area under the receiver operator curve (AU-
ROC) performance on the validation set was selected for comparison on the test
set. We reported an average of 5 random runs on the test set.
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Table 2. Ablation studies on the combination of different input types.
IL: intrinsic latency, CL: cross latency, ZL: zero latency. V&L: Vision and Language.

Input types Category Accuracy AUROC Sensitivity Specificity
IL Language 52.1±2.6 48.3±3.0 60±49.0 40±49.0
CL Vision 53.1±3.2 55.4±1.5 44.7±23.0 62.9±19.4
ZL Vision 70.6±3.7 81.4±1.4 83.0±7.2 57.4±12.5

CL+IL V&L 53.9±2.3 54.9±1.7 59.6±5.2 47.5±4.7
ZL+CL Vision 74.0±2.8 82.2±1.8 81.0±5.5 65.7±9.9
ZL+IL V&L 75.0±1.6 82.8±0.5 78.5±3.6 71.0±3.1

Ours (ZL+CL+IL) V&L 75.9±1.9 83.4±0.5 79.6±3.7 71.2±3.4

3.2 Experimental results

Comparison with State-of-the-art Methods The quantitative diagnosis
prediction results are presented in Table 1. Our model achieved the best per-
formance in terms of accuracy, AUROC, and specificity. While improvements
in sensitivity were marginal, our approach outperformed other baselines, even
those using the same transformer architecture. This superior performance is
attributed to our integration of temporal dynamics alongside the conventional
FC and the inclusion of intrinsic latency text descriptions generated with a
pretrained language model [1,19]. These results emphasize the added value of
leveraging temporal dynamics in fMRI analysis.

Interpretation of the ROI-level importance To assess the importance of
ROI in predicting ASD, we visualized the important regions using the merged
embeddings generated through the class token. Fig. 2(a) visualizes the top 10%
important regions. The angular gyrus, anterior and medial cingulate, superior,
and medial frontal gyrus, superior and medial temporal gyrus, lingual gyrus,
cuneus, insula, fusiform, supplementary motor area, and medial occipital gyrus
were emphasized. These emphasized regions have been previously identified as
related to ASD diagnosis and clinical symptoms [10,11,6,5]. Fig. 2(b) illus-
trates important regions stratified across seven brain functional communities,
with the ventral attention network receiving the greatest emphasis. This ob-
servation aligns with existing research, which identifies atypical development in
this network as a hallmark characteristic of ASD [10,11]. Fig. 2(c) demonstrated
the cognitive decoding of important regions, indicating that the highlighted areas
are associated with cognitive functions often impaired in ASD, such as emotional
inhibition, executive functioning, and memory retrieval [6].

Ablation study We performed ablation studies to examine the effects of data
types, reconstruction, text description, and embedding merge strategies. Table 2
highlights performance variations based on input data types showing that using
cross or intrinsic latency individually—or even in combination—does not achieve
strong predictive performance. However, these input types enhance prediction
when integrated with zero latency (i.e., FC). In summary, temporal features
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Table 3. Ablation studies about loss, text description, and merging embeddings.

Method Accuracy AUROC Sensitivity Specificity
W/O cycle loss 74.8±2.3 83.2±1.1 80.6±5.9 68.2±7.1

W/O recon and cycle loss 72.4±3.3 80.6±2.9 76.1±6.9 68.6±8.8
W/O text (real valued ZL) 73.6±2.5 81.4±1.6 81.5±3.7 64.5±8.5
Merging embeddings Accuracy AUROC Sensitivity Specificity

Merging by mean 72.1±0.9 80.2±0.7 79.3±4.0 64.0±5.9
Merging by concatenate 68.6±2.1 78.8±1.7 72.9±9.1 64.2±10.1

Merging by sum 70.4±2.1 79.5±1.6 77.0±6.2 62.5±8.3
Merging by max 71.3±2.1 77.9±2.6 72.0±5.1 70.2±1.9

Ours 75.9±1.9 83.4±0.5 79.6±3.7 71.2±3.4

Fig. 3. The results of zero latency and cross latency matrix reconstruction,
(a) illustrates the reconstruction results of zero latency matrix. Reconstructed image
is the result of X ′

CL fed to DZL and cycle reconstructed image is the result of X ′
ZL

fed to ECL followed by DZL. (b) illustrates the reconstruction results of cross latency
matrix. Reconstructed image is the result of X ′

ZL fed to DCL and cycle reconstructed
image is the result of X ′

CL fed to EZL followed by DCL.

and text description enhance accuracy, AUROC, and specificity. Table 3 eval-
uates the impact of different combinations of loss terms, including the use of
text description and embedding merge approaches. Removing reconstruction or
cycle-consistent reconstruction losses results in reduced performance, with re-
construction loss having a more considerable impact on accuracy and AUROC,
while cycle-consistent loss better balances sensitivity and specificity. Fig.3 visu-
alizes the result of reconstruction and cycle reconstruction. The MSE between
original and reconstructed data are 0.042±0.018 for zero latency reconstruc-
tion, 0.039±0.019 for cycle-consistent reconstruction, and 0.086±0.016 for cross
latency, indicating small reconstruction errors. Moreover, incorporating text de-
scriptions of intrinsic latency boosts performance, emphasizing the potential
of using a pretrained text encoder for further refinement in disorder prediction.
Lastly, the learnable weighted sum method for merging embeddings outperforms
other methods, demonstrating the effectiveness of the parametrized approach.

4 Conclusion

This study presents a novel fMRI analysis method integrating the temporal dy-
namics (cross and intrinsic latency) with the spatial FC patterns. PMIL demon-
strated superior performance in predicting ASD compared to typically develop-
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ing individuals while identifying explainable and clinically relevant brain regions.
Moreover, our method linked these regions to cognitive functions commonly as-
sociated with ASD. A key feature of PMIL is using intrinsic latency–based text
descriptions via a pretrained text encoder to enhance multi-modal brain anal-
ysis. This highlights the potential of PMIL for application to a wide range of
psychiatric disorders beyond ASD. Future work will focus on improving the
generalizability, exploring diverse text description strategies, and incorporating
different brain atlases to expand its utility across various neuroimaging datasets.
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