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Abstract. Accurate segmentation of pulmonary structures is crucial
in clinical diagnosis, disease study, and treatment planning. Significant
progress has been made in deep learning-based segmentation techniques,
but most require large amount of labeled data for training. Consequently,
developing precise segmentation methods that demand fewer labeled
datasets is paramount in medical image analysis. We constructed PAV-
Seg3D, the largest Pulmonary Arteriovenous 3D Segmentation Dataset
to date (718 scans).The emergence of pre-trained vision-language foun-
dation models, such as CLIP, recently opened the door for universal
computer vision tasks. However, exploring these models for pulmonary
artery-vein segmentation is still limited. This paper proposes a novel
framework called LA-CAF, which adopts pre-trained CLIP as a strong
feature extractor for generating the segmentation of 3D CT scans, while
adaptively aggregating the cross-modality of text and image represen-
tations. We propose a specially designed adapter module to fine-tune
pre-trained CLIP with a self-adaptive learning strategy to effectively
fuse the two modalities of embeddings. We validate LA-CAF on two
datasets: PAV-Seg3D and the public PARSE2022 dataset. The experi-
ments show that our method outperformed other state-of-the-art meth-
ods by a large margin. The dataset and code is made publicly available
on https://github.com/zhuji423/LA-CAF-MICCAI2025.

Keywords: Vision-language model · Pulmonary A/V segmentation ·
CLIP.
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1 Introduction

In recent years, pulmonary vascular diseases, including pulmonary embolism
and pulmonary hypertension, have emerged as conditions with elevated morbid-
ity and mortality rates. Computed tomography (CT) has been widely adopted as
a diagnostic tool to elucidate tomographic patterns of pulmonary diseases [25].
Therefore, implementing automated pulmonary vascular segmentation is of sig-
nificant clinical importance for achieving a three-dimensional reconstruction of
the pulmonary vascular architectures. However, the manual delineation process
remains labour-intensive due to the complexity of tubular structures. Segmen-
tation methods for lung vessels have primarily focused on Convolutional Neural
Networks (CNNs), particularly the U-Net architecture and its variants. These
approaches have effectively maximized the potential of limited labeled data,
especially from CT scans. Many semi-supervised and weakly supervised learn-
ing approaches are proposed based on pseudo labeling of the partially labeled
data [13–18,21,23,26,27]. However, they often suffer significantly from the incor-
rectness of pseudo labels associated with unlabeled parts of the CT data [22,28].

The emerging paradigm of Vision-Language Model (VLM) pre-training with
zero-shot transferability has attracted considerable interest for leveraging web-
scale image-text pairs. Exemplified by CLIP [19], these models align modalities
via a symmetric contrastive loss, minimizing cosine similarity between matched
image-text pairs while maximizing it for negatives. This mechanism enables di-
rect deployment to downstream tasks without task-specific fine-tuning. However,
significant domain gaps persist when applying VLMs to specialized domains
containing unseen data modalities (e.g., 3D medical imaging data absent from
CLIP’s training corpus). To address these adaptation challenges, numerous ef-
forts are being made to adapt VLMs to specific task domains. For example, some
approaches [4,19,24] modify the contrastive objectives to generative or alignment
objectives to retrain a VLM. On the other hand, other methods fine-tune exist-
ing VLMs at a lower cost, including techniques such as prompt tuning [9] and
feature adapters [3]. Thus, it raises a question: How can we effectively utilize
CLIP for 3D pulmonary artery/vein segmentation tasks?

This work introduces an efficient Language-Guided self-adaptive Cross Atten-
tion Fusion framework called LA-CAF that integrates adaptive modules designed
explicitly for pulmonary artery/vein (A/V) segmentation tasks. Our model not
only preserves the performance of the pre-trained model to a great extent but
also leverages the unique characteristics of PAV-Seg3D settings more effectively.
By incorporating these adaptive modules, LA-CAF achieved an average DSC
score of 77.26% on PAV-Seg3D, significantly surpassing the performance of
other methods, such as nnU-Net [6] by an average DSC score of 9.74%, and nn-
Former [29] by an average DSC score of 12.8%. Additionally, LA-CAF achieved
an average DSC score of 84.71% on PARSE, surpassing other methods by 2.79%
-9.5%. The primary contributions of this study are as follows:

(1) We exploit a large pre-trained vision-language model to segment pul-
monary arteries and veins using a substantial local dataset PAV-Seg3D compris-
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ing 718 annotated CT scans. PAV-Seg3D dataset will be made publicly available
upon acceptance.

(2) We propose LA-CAF, an adaptive module incorporating attention mech-
anisms and data augmentation methods that are specially designed for PAV-
Seg3D to highlight the vascular characteristics of pulmonary arteries and veins.
These mechanisms significantly enhance the fusion of features between the lan-
guage and visual models, yielding awe-inspiring results on the test dataset.

(3) Extensive experiments on PAV-Seg3D and PARSE2022 datasets have
been conducted to validate the effectiveness of our proposed methods. The results
of these experiments have demonstrated significant performance improvement
over other state-of-the-art methods.

Fig. 1. Overview of the proposed LA-CAF framework, which comprises a text encoder
and an image segmentation model. Best viewed in color.

2 Methods

CLIP (Contrastive Language-Image Pre-training) is a pretraining method
developed by OpenAI [19]. Built upon the methodology of contrastive pre-
training [10], it jointly optimizes a vision encoder and a text encoder, where
the vision encoder is based on either ResNet [5] or Vision Transformer(ViT) [2].
The language encoder is rooted in a transformer-based model like BERT [1],
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forcing the paired image-text information to be as close as possible to the joint
image-text latent space after encoding. We adopt the original CLIP model as
our text embedding extractor. Trained on a vast collection of image-text pairs,
CLIP learns visual representation through text supervision, known as prompt.
We design a specialized prompt for our pulmonary vessel segmentation task.

2.1 Pretrained Text Encoder and Vision Model

Text Encoder: We use the original pre-trained CLIP encoder Etext with
a specially designed medical prompt xtext ( i.e. ‘A computerized tomography
of a category with small branches’) to generate text embeddings Ht ∈ RK∗D,
where K represents the number of classes, and D represents the length of the
embedding. The pre-trained encoder consists of a 12-layer 512-wide transformer
with eight attention heads . The 512-wide output of the transformer is used
as text embedding. To enhance the CLIP architecture’s medical capability for
medical image segmentation tasks, we use K text adapters Atext to fine-tune
Etext.

Ht = Etext(xtext), H
a
t = Atext(Ht). (1)

Vision Model: The CLIP-Driven Universal Model [8] introduces the first
effective integration of CLIP’s visual-language representations into medical 3D
semantic understanding at the voxel level. Accounting for its strong ability to
segment organs, the pre-trained model minimizes the time cost of training a
model and inherits the weights that are suitable for organ segmentation. There-
fore, we adopt a pre-trained U-Net model as the backbone for segmentation.
Specifically, in our model, the 3D CT images ximg ∈ RH∗W∗L are encoded into
a feature map Hv ∈ RB∗C∗H∗W∗L through the U-Net encoder Eimg, where B
represents batch and C represents channels. An image adapter Aimg is used to
map every batch B of raw high-level features to the embedding Ha

v ∈ RB∗D.

Hv = Eimg(ximg), H
a
v = Aimg(Hv), (2)

To match the shape of Ht, we duplicate Ha
v according to the class number

K. We define:

rep(H, k) = concat[H,H, . . . ,H︸ ︷︷ ︸
k times

], (3)

then, we obtain the result Ha
v ∈ RB∗K∗D by inputting Aimg(Hv),

Ha
v = rep(Aimg(Hv),K). (4)
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2.2 Attention-based Self-Adaptive Learning Pipeline

The vision-language models have shown promising results across various
tasks, attributable to their generalizability and interpretability. However, they
often face the image and text distribution gap when applied to downstream
tasks. For example, a medical segmentation dataset may have task-specific im-
age styles and text formats that are not included in the pre-trained data sources.
Therefore, how to fine-tune the pre-trained model at a lower cost and how to
fuse different modalities of embeddings can be a noteworthy problem. We pro-
pose an attention-based self-adaptive learning pipeline to address the problem
effectively.

In detail, the capability of CLIP is rooted in the natural image-text pairs.
We enhance it for medical image segmentation tasks through fine-tuning. During
training, the pre-trained CLIP encoder maintained frozen instead of fully ad-
justing all parameters to reduce the computing workload. We devise an adapter
module and integrate it into designated positions shown in Fig 1. The adapter
consists of a down-projection, ReLU activation, and up-projection with batch
normalization and self-attention sequentially. The down-projection compresses
the given embedding into a lower dimension using an MLP layer. At the same
time, the up-projection expands the compressed embedding back to its original
dimension using another MLP layer. Self-attention calculation captures the cor-
relation of each class. The adapter trains CLIP embedding at a low cost with
frozen parameters while intensely learning the attention of each class, guiding
the segmentation model through the fusion method. Additionally, a trainable
adapter is introduced into the vision model component, which is based on a
pre-trained U-Net due to its manageable parameter size, making it an efficient
starting point for training. This adapter facilitates the transition from image
features to embeddings, enhancing the segmentation process.

In terms of fusing text and image embeddings after adopting the vision-
language model as the backbone, many researchers [7,30] adopt simple strategies,
such as direct plus or concatenation ignoring domain gap between text and
image. Differently, we adopt the cross-attention(CA) module to integrate the two
domain embeddings adaptively. The attention function serves as the operation
to discover inner relationships from one modality to another. We have used
the aforementioned adapters to get text embedding Ha

t ∈ RB∗K∗D and image
embedding Ha

v ∈ RB∗K∗D, for every batch Ha
t (b), we calculate the attention

scores Hf :

fCA(H) = softmax
(
q(Ha

t )
T k(Ha

t +Ha
v (b))√

dk

)
v(Ha

v (b)). (5)

The input sequences of these two modalities are identically ordered in our input.
Based on this, contextual clues can be propagated between modalities. As for
the cross-attention module’s detail, we choose the text embedding to be query
(Q), image embedding to be value (V), and the plus of them to be the key (K).
With language embedding’s guidance, more precise features can be automatically
selected rather than concatenated or plus in a hand-crafted way. The fusion of
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image and text embedding Hf uses a multi-layer perceptron (MLP) to generate
parameters (θk). Three sequential convolutional layers with 1 × 1 × 1 kernels
filling with (θk) convert vision decoder output features F into k predictions,
where Pk = Sigmoid((F ∗ θk1) ∗ θk2) ∗ θk3), θk = {θk1 , θk2 , θk3}. ∗ represents
convolution operation. For each class k, we get every foreground class Pk ∈
R1×H×W×L. After that, we merge k classes of prediction into one prediction P ,
shown in Fig 1. Pk is supervised by label Yk, where the overall loss is represented
as:

Lsup =
1

|B|

|B|∑
i=1

[LS(Pk, Yk)] , (6)

where LS = 1
2 [LDice + Lce]; LDice and Lce represent the Dice and cross-entropy

losses, respectively.

3 Dataset and Implementation Detail

3.1 Dataset

We conduct extensive experiments on two datasets, including private PAV-
Seg3D and public PARSE2022 [12] dataset. PAV-Seg3D collects a large-scale
Pulmonary ArterioVenous Segmentation 3D Dataset from a real-world local hos-
pital, comprising a total of 718 3D CT volumes provided in compressed NIFTI
format. Among these, the pulmonary arteries and veins are manually annotated,
where 79 CT scans are fully labeled and 639 CT scans are half-labeled, indicating
either the left lung or the right lung are labeled. The sizes of these CT volumes
range from 512×512×169 to 512×512×985, with varying slice thicknesses from
0.62 to 1.25 mm. Annotations are obtained from five junior clinicians (with one
to five years of experience) who used MIMICS to manually refine the segmenta-
tion results under the supervision of two board-certified radiologists. PARSE2022
consists of 100 CT scans which are annotated at the pixel level for artery. In our
experiments, we divide the dataset into training, validation, and test sets at a
ratio of 7:1:2. Results are shown in Table 2.

3.2 Implementation Detail

Our model is implemented with U-Net as the backbone and optimizing the
parameters via AdamW [11]. The training utilizes a batch size of 4 and a patch
size of 96 × 96 × 96. The default initial learning rate is set to 8e-4, with a mo-
mentum of 0.9 and a decay of 1e-5. The framework is implemented in MONAI
version 0.9.05. The Dice Similarity Coefficient (DSC), Normalized Surface Dis-
tance (NSD), Jaccard and 95% Hausdorff distance (HD95) are used to evaluate
vessel segmentation performance in this work. We use specialized data augmen-
tation to our dataset. Firstly, we adjusted the window width and level ranging
from -700 to 300. Then, we calculate the Hessian matrix of the CT and obtain
the eigenvalue to fill the Z-axis, which strengthens the CT’s tubular structures,
as shown in Fig 1.
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Fig. 2. Visualization of segmentation results on PAV-Seg3D(A-D) and Parse2022(E).
The regions enclosed by the dashed yellow boxes indicate misclassification executed by
other models; Mask colors have been set to red for arteries and green for veins.

Table 1. Ablation study of every component of our framework. UM indicates Universal
Model, DA indicates Data Augmentation, AAP indicates Attention-based self-Adaptive
learning Pipeline

UM DA AAP DSC(%) ↑ Jaccard(%)↑ NSD↓ HD95↓

✓ 64.490.45 56.320.15 0.980.03 47.340.35
✓ ✓ 71.240.25 58.330.02 0.910.06 46.430.01
✓ ✓ ✓ 76.220.76 62.740.24 0.860.43 14.480.22
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Table 2. Quantitative results of comparison experiment. Metrics are presented in the
form of meanstd, where each method is evaluated over three trials for averaging.

Methods U-Net nnU-Net nnFormer Universal Model LA-CAFDataset

PAV-Seg3D

DSC(%) ↑ 61.230.48 67.520.63 64.460.51 70.240.57 77.260.64

Jaccard(%)↑ 48.340.38 56.450.56 51.320.12 57.250.57 64.130.61

NSD↓ 1.940.19 0.810.05 0.890.06 0.790.02 0.860.05

HD95↓ 132.231.32 43.760.51 86.610.87 25.341.78 13.720.14

PARSE2022

DSC(%) ↑ 75.210.32 80.540.36 80.060.23 81.920.33 84.710.32

Jaccard(%)↑ 60.510.25 67.610.22 66.910.48 67.320.28 73.570.18

NSD↓ 0.770.31 0.850.03 0.840.34 0.840.09 0.920.04

HD95↓ 70.812.56 54.350.46 54.110.56 58.453.69 14.430.26

4 Experiments

4.1 Ablation Studies

We conduct ablation studies to evaluate every component of LA-CAF using
on PAV-Seg3D using 79 fully labeled dataset. The quantitative results of the dif-
ferent methods are presented in Table 1. The pre-trained Universal Model(UM) [8]
is used as our baseline. We first use a specialized Data Augmentation(DA) to ef-
fectively use our half-labeled data, contributing a performance gain of over 6.75%
DSC, 2.01% Jaccard over baseline. Subsequently, our proposed attention-based
self-adaptive learning pipeline is introduced to fine-tune the pre-trained model
and align text representations with image representations with an adaptive at-
tention mechanism. We observe a further increment of 4.98% in DSC, 4.41% in
Jaccard and a significant decrement of 31.95 in HD95. Each component signifi-
cantly enhanced our method.

4.2 Comparison of Quantitative Results on Test Dataset

Table 2 presents a qualitative comparison of PAV-Seg3D and PARSE2022
test dataset against other state-of-the-art methods [6,8,20,29], which consists of
143 CT volumes and 20 CT volumes. Compared to the vanilla 3D U-Net, all other
methods outperformed it in terms of DSC and Jaccard. Our method achieved
DSC of 77.26% on PAV-Seg3D and 84.71% on PARSE2022, outperforming the
baseline universal model [8] by 2.79% - 7.02% in DSC, as well as surpassing
the supervised self-configuring model nnU-Net by 4.17% - 9.74% in DSC. Ad-
ditionally, it outperformed the attention-based self-configuring model nnFormer
by 4.54% - 12.8% in DSC. Overall, our model significantly surpasses all other
compared methods on two datasets with integrating more semantic informa-
tion from CLIP, achieving superior state-of-the-art performance. Furthermore,
Figure 2 displays the visualization of segmentation results for our method and
others, illustrating that our method segments both veins and arteries closer to
the ground truth.
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5 Conclusion

This work introduces a novel segmentation framework LA-CAF, integrat-
ing vision-language models with a self-adaptive feature learning pipeline and
a designated data augmentation strategy. We leverage our partially annotated
dataset to adhere to the best practices from large vision-language models. The
framework incorporates our proposed adapter for fine-tuning CLIP embeddings,
enhanced with self-attention to capture inter-class relationships. Furthermore,
a cross-attention mechanism is seamlessly integrated to promote the effective
fusion of the vision model with the segmentation model. We present PAV-Seg3D
as the most extensive clinical dataset to date for pulmonary artery vein seg-
mentation. The experiment results on two datasets affirm the superiority of our
framework in the challenging task of pulmonary vessel segmentation against cur-
rent state-of-the-art methods.
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