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Abstract. Medical imaging datasets often contain heterogeneous biases
ranging from erroneous labels to inconsistent labeling styles. Such biases
can negatively impact deep segmentation networks performance. Yet,
the identification and characterization of such biases is a particularly te-
dious and challenging task. In this paper, we introduce HyperSORT, a
framework using a hyper-network predicting UNets’ parameters from la-
tent vectors representing both the image and annotation variability. The
hyper-network parameters and the latent vector collection correspond-
ing to each data sample from the training set are jointly learned. Hence,
instead of optimizing a single neural network to fit a dataset, Hyper-
SORT learns a complex distribution of UNet parameters where low den-
sity areas can capture noise-specific patterns while larger modes robustly
segment organs in differentiated but meaningful manners. We validate
our method on two 3D abdominal CT public datasets: first a syntheti-
cally perturbed version of the AMOS dataset, and TotalSegmentator, a
large scale dataset containing real unknown biases and errors. Our ex-
periments show that HyperSORT creates a structured mapping of the
dataset allowing the identification of relevant systematic biases and erro-
neous samples. Latent space clusters yield UNet parameters performing
the segmentation task in accordance with the underlying "learned" sys-
tematic bias. The code and our analysis of the TotalSegmentator dataset
are made available: https://github.com/ImFusionGmbH/HyperSORT

Keywords: Hyper Networks · Robust Training · Self-Organising.

1 Introduction

The development of deep learning solutions for medical image analysis requires
a thorough review of the training data and its annotation [24]. Indeed, data
irregularities such as wrong annotations or acquisition errors can perturb the
training process and ultimately degrade the final algorithm capabilities [20].

⋆ These authors contributed equally to this work.
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Fig. 1. Overview of HyperSORT. The hyper-network Hβ generates the UNet parame-
ters θ from a conditioning vector λ̄n specific to a training sample In, Sn.

Medical data curation still heavily relies on human analysis [8], making it a
particularly lengthy and error-prone step.

HyperSORT tackles this problem by modeling the annotation process with an
additional hidden variable. As such, this hidden variable can parameterize differ-
ences between raters or annotation errors. A hyper-network [10] conditions the
segmentation UNet [19] behavior on this variable. During training, HyperSORT
jointly learns the parameters of the hyper-network and the empirical distribu-
tion of the annotation conditioning hidden variable. An overview of the proposed
method is shown in Figure 1. HyperSORT provides both robustly trained ver-
sions of the segmentation UNet and a meaningful mapping of the training set
which can be used to curate the training set and identify systematic biases.

We demonstrate the performance and usability of HyperSORT on two large
3D datasets. As a first proof of concept where the main mode of annotation
variability is known and controlled, we injected synthetic perturbations into the
AMOS dataset [13]. Second, as a real use case, we used the TotalSegmentator [22]
training set. Indeed, this widely recognized dataset has been largely improved
and corrected from V1 to V2, offering a form of pseudo ground truth for abnormal
cases. In these experiments, we show that HyperSORT generates performing
segmentation UNets while providing a meaningful map of the training set which
can be interpreted and used to detect erroneous labels.

2 Related works

Dataset quality control Segmentation data curation is challenging as, unlike
for classification tasks where an annotation is either right or wrong, segmenta-
tion masks can be partially right and wrong. While several methods have been
developed for regression/classification data curation (e.g. [5]), the literature on
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data curation for segmentation tasks is scarcer. A first typical approach is to
rely on repeated cross-validations and use validation metrics such as the Dice
score as a proxy for annotation quality [15]. Alternatively, one can rely on a
pretrained quality control regressor such as the recently developed Quality Sen-
tinel [6]. While these methods can flag some erroneous cases, HyperSORT pushes
the analysis beyond by providing a meaningful mapping for the whole dataset.

Learning from noisy labels To circumvent the challenge of achieving gold
standard annotations, methodologies improving models’ robustness have been
developed. When a rater stratification is available, disentanglement [25] or sam-
pling reweighing [17] can be used. In the general case, probabilistic modeling
allows to predict a segmentation distribution [2]. Alternatively, losses [9,26], ar-
chitecture choices [21,12], or specific training strategies [7] have been shown to
improve models’ robustness to erroneous labels. For more details on noisy labels
detection and robustness, we refer the interested reader to [23] for a more com-
prehensive review. HyperSORT combines enhanced quality control and robust
learning by generating performing networks from potentially noisy labels along-
side a mapping of the training set that can be used to discover erroneous cases
and systematic biases.

Hypernetworks Hypernetworks have been used as a way to condition the be-
havior of a primary neural network with respect to a user-provided variable.
In the context of medical imaging, it was first used to dynamically tune the
regularization strength of deep deformable registration networks [11,18]. More
recently, hyper-networks were used to condition a 3D segmentation network on
the input image spacing resolution [14]. Hypernetworks can also enable synergis-
tic learning from datasets with heterogeneous annotations by conditioning the
network on the structure to segment [3]. All these approaches make use of ex-
plicit conditioning variables, either hand-crafted or coming from meta-data. The
new paradigm introduced here instead leverages hyper-networks by learning and
discovering relevant implicit conditioning within the training set.

3 Method

Supervised segmentation learning often assumes a data distribution D from
which input/segmentation pairs are sampled (I, S) ∼ D. A segmentation net-
work, typically a UNet Uθ [19] with parameters θ, is then optimized to minimize
an error measure LSeg(Uθ(I), S) under the data distribution. However, this as-
sumes that the error in the data annotation is independent and identically dis-
tributed (iid) and centered around the actual "ground truth" label [1]. These
assumptions do not always hold in the medical domain. Indeed, the scarcity of
available training data and the complex annotation process (often relying on
bootstrapped, semi-automatic approaches [4] and show-casing high inter-rater
variability [2]) require a refined formulation.
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Modelization of the Labeling Process Instead, we model the data distribu-
tion more precisely by considering the labeling process: Ω(I, λ) → S, where Ω
is an unknown deterministic oracle function, and λ ∈ Rn a latent vector that
parameterizes the oracle annotation behavior. Our data distribution explicitly
models the label generation process: D = {I,Ω(I, λ)|I ∼ I;λ ∼ Λ}, where I and
Λ are the distribution of images I and latent vectors λ respectively. The λ vec-
tors model the labeling process and can, for instance, represent erroneous labels
or a specific labeling style from an annotator, as we will show more concretely
in Section 4. Our modelization splits the annotation error between a system-
atic component modeled by λ and a centered iid additive noise [1], relaxing our
learning assumptions.

HyperSORT Our model approximates the Oracle function Ω and the set of
annotation style λ on an existing training set. Firstly, we associate a trainable
latent vector λ̄n to each training sample (In, Sn) ∈ D̄ where D̄ is the empirical
data distribution, i.e. the training set. We consider the well established UNet [19]
architecture Uθ parameterized by θ. Instead of directly optimizing θ, we intro-
duce a hyper-network Hβ , parameterized by β [10], which predicts the UNet
parameters θ from a latent vector λ̄. The hyper-network parameters β and the
set of proxy latent vectors Λ̄ = {λ̄n}n≤|D̄| are jointly optimized as:

min
β,Λ̄

|D̄|∑
n=1

LSeg(UHβ(λ̄n)(Xn), Sn) + Lreg(λ̄n) (1)

where LSeg is the Dice + CrossEntropy loss and Lreg is the L1-norm regular-
ization term on the latent vectors. This regularization term pushes the latent
vectors towards the origin of the latent space, thus making the main annotation
mode located around the zero vector

−→
0 . Consequently, the most unusual cases

typically end up isolated further away from the origin and can be identified.
Upon convergence, the hyper-network Hβ mimics the Oracle Ω and the learned
distribution of proxy latent vectors Λ̄ estimates the annotation style distribution
Λ. Using a hyper-network to parameterize the oracle has two important advan-
tages. First, it allows a low-dimensional latent parameterization of annotation
styles which creates an interpretable map of the training set in the latent space.
Second, as opposed to learning multiple unrelated sets of UNet parameters, us-
ing a hyper-network has been shown to enable synergistic learning [3] allowing
to make the different annotation styles benefit from each other.

Inference When segmenting a new image, we choose the latent variable that the
hyper-network Hβ will use to adjust the UNets weights. We typically consider
the centroids of the latent vector clusters that have formed during training, thus
corresponding to different annotation styles. Given the regularization term Lreg,
a canonical choice is to use λ =

−→
0 , as a representative of the main annotation

style in the training set. Alternatively, a choice can be given to the user to
dynamically select the most relevant annotation style for the case to segment.
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Fig. 2. (Left) Obtained AMOS latent space. The most eccentric cases of the
−→
0 cluster

are challenging cases (from left to right): incomplete liver segmentation, liver tissue
heterogeneity, and abnormal abdominal anatomy where the gallbladder and stomach
are shown for reference. (Right) Inference using the

−→
0 latent on images from the

erosion and dilation clusters.

In addition, given a set of preferred annotation styles selected by an annotator,
HyperSORT provides the corresponding UNet parameters which can be used to
correct erroneous labels and generate better pseudo-labels.

4 Experiments and Results

HyperSORT is agnostic to the choice of network architecture. Since we target
segmentation applications, we use a standard 3D UNet architecture with 3 down-
sampling stages, 16 channels at the highest resolution and 3 convolutional layers
at every resolution stage (ReLU activation, followed by instance normalization).
We used 2-dimensional latent vectors to facilitate the visualization and analysis
of our results. The hyper-network simply consists of a fully connected network
with 3 hidden layers of size 50 each (ReLU activation). The final UNet param-
eters prediction is followed by a custom activation x :−→ tanh(x) ∗ 5 capping
the norm of predicted parameters. This experimentally stabilizes the training.
All parameters are trained using the Adam optimizer with an initial learning
rate of 10−4 until convergence. Additional details can be found in our public
repository1.

4.1 Proof-of-concept using synthetic label perturbations

As a first proof of concept, we create a rough approximation of a multi-rater sce-
nario, with some being more conservative than others regarding organ bound-
aries. We derived a liver segmentation dataset with 200 CT scans from the
1 https://github.com/ImFusionGmbH/HyperSORT
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AMOS training dataset [13]. We perturb ∼15% of the dataset by performing
3, 4 or 5 iterations of erosion on ∼7.5% of the scans, and dilation on another
∼7.5%, leaving 85% of labels unperturbed. The learned latent vector distribution
Λ̄ ⊂ R2 is shown in Figure 2. We observe that the [1.0,−1.0] direction captures
the tightness of liver boundary. Moreover, the synthetic labeling styles (normal,
eroded and dilated) are clearly separated and ordered in a meaningful way in the
latent space. The eroded and the dilated clusters are also more spread along that
direction as they contain variability regarding the number of times each morpho-
logical operation was applied. We also see that the central cluster makes use of
the other, orthogonal direction to capture some additional secondary variability.
For instance, the three most distant cases from that cluster are all challenging,
as illustrated in Figure 2. Finally, as shown on the right-hand side of Figure 2,
UNet parameters from preferred clusters can be used to correct erroneous anno-
tations from the training set, making of HyperSORT a particularly convenient
tool for bootstrapping scenarios.

4.2 Application to the TotalSegmentator dataset

The TotalSegmentator (TS) dataset [22] is a comprehensive collection of 1204
annotated CT scans from different institutions, scanners, and protocols. The
corresponding label maps contain more than 100 anatomical structures. Its im-
pressive size has made it very popular in the research community and the basis
of numerous papers. However, due to its annotation process (iterative learning,
via manual refinement of the predictions of existing models), the label maps may
sometimes contain artifacts and over/under-segmentations. Therefore, a second
iteration (TS-V2) of the dataset has recently been published and aims to fix
some of these errors. This makes it a suitable test-bed for our approach, since
we can use TS-V1 as a "flawed" dataset and TS-V2 as the proxy ground truth.
From V1 to V2, ∼ 50% of liver annotations were corrected and ∼ 20% required
significant adjustments (>10000 voxels changed). This experiment allows us to
demonstrate our two main claims:

Clusters capture annotation "styles" and generate robust networks
On this real use case, the meaning of the five clusters illustrated in Figure 3 is
more subtle. Yet, we show here that they all produce usable UNets with sig-
nificant "annotation style" variation. We consider the five UNet parameter sets
obtained from the centroid of each of these clusters. In comparison, we train five
randomly initialized UNets with the same architecture as our primary network.
We evaluate these models on the CT-1K dataset subtask 2 [16], another large
dataset containing 361 diverse abdominal CT scans which do not overlap with
TS. Performances are reported in Table 1. In addition to these 2 × 5 models, we
also report the performances of the "best out of 5 models", simulating a "hu-
man in the loop" inference scenario. We observe that all UNets generated from
HyperSORT yield competitive performances on a large test set. We also note
that even smaller clusters containing a limited amount of samples achieve good
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Fig. 3. (Left) Obtained TS latent space. Blue and green dots respectively correspond
to non-corrected and corrected cases from V1 to V2. Green dots’ radii are proportional
to the number of voxels modified. 5 visual clusters are highlighted with colored ellipses.
(Right) Slices from 3 cases belonging to the cluster that were not modified between
V1 and V2. Purple arrows highlight erroneous liver labeling. Corrective predictions
from the cluster UNet are shown.

generalization performances thanks to, we hypothesize, the synergistic learning
capabilities of hyper-networks highlighted in [3].

Most importantly, we note that HyperSORT allows a better exploration of
the solution space by providing five UNets which segment the liver in five differ-
ent ways. Indeed, the Dice standard deviation per case between UNet predictions
is on average two times larger within HyperSORT UNets (0.5) than within the
five randomly initialized UNets (0.2) (pvalue ≤ 10−5). This fine exploration of
the solution space provides systematically better predictions in the "human in
the loop" inference scenario (pvalue ≤ 10−5). As the obtained solutions are better
differentiated while remaining meaningful, the annotation styles on the left-hand
side of the HyperSORT learned latent space (e.g. cluster) must better corre-
spond to the annotation style of the CT-1k dataset labels.

Beyond this quantitative evaluation, we observe in Figure 3 that the red
cluster contains several cases that were corrected from V1 to V2. This figure
also highlights several samples from that cluster that were not corrected while
showcasing erroneous annotations. This suggests that this cluster captures a
specific form of systematic annotation error and explains the poorer performance
of that cluster’s UNet on the CT-1K dataset. This also confirms the practical
value of HyperSORT as a tool providing a rich and meaningful analysis of a
dataset alongside robust and diverse UNet parameters.

The latent map can be used to identify erroneous cases To evaluate
the ability of HyperSORT to detect erroneous cases, we use the changes ap-
plied to the liver label from V1 to V2 as pseudo ground truth. Only cases that
had at least 1 voxel changed were considered for the pseudo ground truth as
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Table 1. Models performances on the CT-1k dataset. Colors correspond to UNets
obtained from HyperSORT latent clusters centroid.

UNet seed 1 2 3 4 5 Best
Dice (std) 96.4 (1.8) 96.1 (1.5) 96.4 (1.3) 96.5 (1.4) 96.4 (1.5) 96.6 (1.2)
HyperSort UNet Best
Dice (std) 96.4 (1.3) 96.7 (1.5) 97.1 (1.5) 95.9 (1.4) 96.4 (1.5) 97.2 (1.4)

we are sure that these cases were checked from V1 to V2. We compare four
different predictors for this experiment. First, Quality Sentinel [6] as a recently
released annotation quality regressor for segmentation. Then, we train a UNet
(same architecture as HyperSORT’s primary network) only on the cases that
were not modified between V1 and V2. As explained in [15], we can then use
this model’s Dice loss on the remaining of the training set as a proxy for label
quality. We refer to this baseline as "Test-Dice". Test-Dice has an edge over
the other predictors as the training/test set split is done leveraging the pseudo
ground-truth. Note that, this UNet’s generalization capabilities are on par with
UNets trained on the whole dataset (96.4 test Dice score on the CT-1k dataset).
We consider two possible predictors derived from HyperSORT’s mapping of the
training set. Following our assumption that the zero cluster captures the norma-
tive behavior, we use the proxy latent vector norms {||λ̄n||2}n≤|D̄|. In addition,
as a measure of "isolation" for training cases, we consider the mean distance to
all cases { 1

|D̄|
∑
m

||λ̄m − λ̄n||2}n≤|D̄|. These two HyperSORT derived predictors

achieve a respective Spearman correlation with the amount of voxels modified
between V1 and V2 of 0.2166 and 0.1723. On the other hand, Quality Sentinel
negative scores have an unexpected negative correlation with the amount of
changes (-0.0499). Test-Dice, despite its edge, also achieves a lower correlation
score of 0.1150. Hence, both HyperSORT-derived features better correlate with
the amount of modifications applied from TS V1 to V2. In addition, we stress
that the obtained latent vector map {λ̄n}n≤|D̄| characterizes the training set
beyond wrong label detection as shown before. This highlights HyperSORT’s
ability to identify candidates for label improvement.

4.3 Discussion

We showed that HyperSORT can capture outliers and variations in the dataset
that could affect the model quality. However, a remaining problem is to differ-
entiate ’bad labels’ from ’challenging correct labels’, which can both be associ-
ated with large latent vectors, preventing them from being represented in the
main mode of the model distribution. On the other hand, this can also indi-
cate under-sampled cohorts of the data distribution that would otherwise be
ignored, and can help reveal biases in existing datasets. Regarding the choice
of a 2-dimensional latent vector, it facilitates visual inspection and was suffi-
cient in our experiments to capture meaningful variations. Higher dimensional
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latent vectors could allow a more homogeneous relationship between the la-
tent space Euclidean norm and annotation style variations, facilitating cluster
interpretation. Evaluating the necessity of higher dimensional latent space for
other datasets is left for future work. Finally, while we focused here for the sake
of conciseness on liver segmentation from CT, HyperSORT can be applied on
any segmentation task including challenging structures such as the intestine or
multiclass problems. Such complex tasks are more likely to exhibit superposed
systematic biases within data samples, making their identification with vanilla
clustering methods more challenging. Our public repository makes the extension
of HyperSORT to any architecture particularly straightforward and displays the
obtained latent space on a series of well known public datasets. We hope that
this will help further curate and improve these datasets.

5 Conclusion

In this paper, we introduced HyperSORT which leverages hyper-networks in
a novel way to finely stratify the training set and help identifying both erro-
neous cases and systematic biases while producing performing robustly trained
networks. As shown in our experiments, HyperSORT simultaneously acts as a
structured curation and corrective tool that could be used systematically when
training new models on large datasets.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.
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