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Abstract. Deep image prior (DIP) has become an important approach
to unsupervised reconstruction of Positron Emission Tomography (PET)
images. In the setting of dynamic PET, however, its performance is
limited by the frame-by-frame reconstruction, computational cost, and
the fixed-size discrete representation of PET images. To address these
challenges, we propose IMREPET a novel dynamic PET reconstruction
method based on implicit neural networks (INR). By incorporating tem-
poral information directly into INR’s parameterization of dynamic PET
images, we overcome the limitation of frame-by-frame reconstructions
without the need of complex algorithms or regularization. Results on sim-
ulated and real-data experiments showed that IMREPET enabled rapid,
high-quality reconstruction with improved signal-to-noise ratio and en-
hanced image detail recovery, while drastically reducing computation
time compared to DIP baselines. The resolution-agnostic nature of INR
further allowed IMREPET to reconstruct PET images at any resolution.
These results show the feasibility of IMREPET as a robust and efficient
solution for dynamic PET imaging.

Keywords: implicit neural representation - dynamic PET reconstruc-
tion

1 Introduction

Dynamic PET images provide detailed insights into the spatial and temporal
distribution of radiotracers within the human body, facilitating quantitative
analyses such as physiological parameter estimation [7,2]. However, due to the
ill-conditioned problem and low counting statistics, dynamic PET reconstruc-
tion remains challenging [27,18]. Traditional methods generally employ frame-
by-frame reconstructions which, such as the Maximum Likelihood Expectation
Maximization (MLEM) [13], tend to overfit to noises in the data. Although
improvements such as kernel methods [28] have been proposed to enhance re-
construction by incorporating prior knowledge, their reliance on the accuracy of
prior knowledge limits their widespread applicability [19].
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In recent years, deep learning has been increasingly integrated into PET re-
construction. Most approaches, whether via end-to-end direct reconstruction [10,
29] or unrolled iterative optimizations [9, 16|, require supervised training using
high-quality datasets that are costly to obtain in PET imaging. For unsuper-
vised PET reconstruction, deep image prior (DIP) [26] has been widely used to
exploit the inherent prior of a CNN with PET reconstruction [6, 11]. While most
of these methods focus on frame-by-frame reconstruction neglecting temporal in-
formation [14, 15|, multiple DIP networks have been utilized with Non-negative
Matrix Factorization (NMF) to separately reconstruct the spatial and tempo-
ral distributions of PET concentration [32]. This approach however introduces
additional regularization terms and iterative steps, making model optimization
more challenging. Additionally, due to the discrete spatial representation of PET
images with CNNs, it generally requires the cropping of input images [6,10].
Furthermore, as the depth and number of CNNs in the DIP model increase, the
computational cost also becomes prohibitively high.

Implicit Neural Representation (INR) is a image representation method that
has gained significant recent attention. INR uses implicit continuous functions to
represent objects, with the continuous function being parameterized by a multi-
layer perceptron (MLP) [25, 24, 20]. This continuous function representation has
shown a strong capability in capturing image priors [23|, as well as remarkable
results in CT [30,25] and MRI [4,31] imaging. The use of INR in PET recon-
struction, however, has not been attempted.

In this paper, we propose the first framework of IMplicit neural REpresen-
tation for dynamic PET reconstruction (IMREPET). By replacing the DIP and
other image priors with an INR prior to represent PET activity images, we
improve the generalizability and reduce the complexity for unsupervised PET
image reconstruction. Moreover, by incorporating temporal information directly
into INR’s parameterization of dynamic PET images, we overcome the limita-
tion of frame-by-frame reconstructions without introducing complex algorithms
or regularization. Our main contribution includes 1) exploring the first appli-
cation of INR to improve the reconstruction of dynamic PET image, 2) pre-
senting an unsupervised and learning-free approach that does not require any
prior images and can be applied to different organs, 3) significantly reducing
computation time compared to DIP-based methods, and 4) being able to han-
dle image reconstruction at any resolution, including achieving super-resolution
during reconstructions. We demonstrated the above benefits of IMREPET in
a comprehensive set of synthetic and real data experiments, in comparison to
existing unsupervised approaches to dynamic PET recontruction.

2 Methods

Problem Formulation: In dynamic PET image reconstruction, the measured
sinogram y, € RM at time frame t can be regarded as a set of independent
random variables that follows Poisson distribution, with its mean value as:

gjt:Pa:t—i—rt, tzl,,T (1)
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where P € RM*N ig the transformation matrix of PET system, x; € RY is the
activity image that represents the spatial distribution of tracer radioactivity at
t,and r; € RM is a noise term that denotes random and scattered events. M and
N are the total number of pixels of sinogram and PET image respectively, and
T is the number of time frames. When y, follows Poisson distribution p (y,|x:),
the log likelihood function for the measured data y,., can be represented as:

M T M

T
L(yrrleir) =YY logp (yidle) = Y viidoghis — i —logyis!  (2)
t=1

i=1 t=1 i=1

INR of Dynamic PET images: We use INR to model a PET image as a con-
tinuous function of the spatial coordinates c¢. We use the multi-channel outputs
of INR to represent time information of dynamic PET images as 1.7 = fy (¢),
where the INR network fy is modled as a multi-layer perceptron (MLP) with
ReLU activations followed by a sigmoid activation, parameterized by 6. In Sec-
tion 3.3, we ablate this design choice vs. incorporating time ¢ as an additional
input to INR. Due to the MLP’s tendency to favor low-frequency informa-
tion of images, we use Fourier feature mapping to let the network learn high-
frequency information. The process of Fourier feature encoding can be described
as: y(c) = [cos(2mcB),sin(2mcB)]", where B € R?*C is a random Gaussian
matrix following a normal distribution A/(0,1), and G is the number of Fourier
feature dimensions. In IMREPET, we set G = 256 for all experiments based on
ablation shown in Section 3.3. Dynamic PET images can now be represented as:

@11 = fo (1(c)) = fo ([cos(2neB),sin(2reB)] ") (3)

Optimization: When substituting Equation (3) in Equation (1), the log likeli-
hood function can be expressed using fy as:

L(yy.r|e1T;0) = ilogp (yi,1;T|fa ([COS(QWCB),sin(?n'cB)]T)) (4)

i=1

Given observed sinograms, we reconstruct 1.7 by minimizing Equation (4) as:
0= argmein{fﬁ(ylzﬂwly;ﬂ)}, Ti.r = fp ([COS(QWCB),SiIl(Q?TCB)]T) (5)

Fig. 1 summarizes the proposed framework.

3 Experiments and Results

3.1 Data

Brain Data Simulation. A brain phantom from BrainWeb [1] was used to
generate simulation dynamic PET data. The pixel size was 2 x 2 mm? and
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Fig. 1. Overview of IMREPET. (a) Construct Fourier feature map of coordinates. (b)
The INR network. (c) The forward process from PET images to measured sinograms.

the phantom size was 128 x 128. Two 16 mm hot spheres were inserted into
the PET image as tumor ROIs. Two-compartmental model with Feng’s input
function was adopted to simulate dynamic *F-FDG scans [3]. The ground truth
of time activity curves of blood, gray matter, white matter, and tumor were
simulated using kinetic parameters from [7]. The scanning schedule consisted of
18 time frames over 60 min: 3 x 60 s, 9 x 180 s, 6 x 300 s. The system matrix was
computed by using Michigan Image Reconstruction Toolbox (IRT) with a simple
strip-integral model [5]. The number of detector bins and projection angles were
128 and 160. Poisson noise was added to the simulated sinograms with the total
count number at ~ 1.8x 107. Uniform random events were simulated to account
for 20% of the noise-free data. Scattered events were not included.

Thorax Data Simulation. We used human XCAT digital phantom to generate
thorax data [22]. The pixel size was 3 x 3 mm? and the phantom size was 128 x
128. Similarly, we used two-compartmental model with Feng’s input function
to generate the ground truth of dynamic PET image. The kinetics parameters
were adopted from [8]. We simulated ROIs including myocardium, liver, lung,
pancreas, marrow, muscle, bone, and soft tissue. The sinograms were generated
as described above and the total count number was set at approximately 1.2x107.

Real Patient Data. A 65-minutes scan with a scan length of 106 c¢cm of a
patient obtained from Biograph Vision Quadra was used [17]|. The dimension of
the images was 440 x 440 x 645 with 1.65 x 1.65 x 1.65 mm3. The data were
divided into 62 time frames with the schedule 2 x 10 s, 30 x 28,4 x 10 s, 8 x 30
s, 4 x60s,5x120s, 9 x 300 s. The images were reconstructed using the man-
ufacturer’s standard reconstruction technique involving point spread function
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Table 1. Metrics of reconstructed PET images on simulated brain and thorax data

Dataset |Methods MSE (%) | |PSNR (dB) 1| SSIM 1
MLEM 0.51£0.02 | 22.97+0.18 | 0.81£0.01

Brain KEM 0.30 £0.02 | 25.18+£0.28 | 0.88 +0.00
DIPNMF 0.20 £0.03 | 26.96 +0.64 | 0.93£0.01
IMREPET (Proposed)| 0.11 +0.01 |29.46 +0.30| 0.95 £ 0.00
MLEM 0.10£0.01 | 30.10+£0.43 | 0.85+0.03

Thorax KEM 0.07£0.01 | 31.73+£0.84 | 0.92+0.01
DIPNMF 0.09 £0.01 | 30.60+£0.68 | 0.93 £0.01
IMREPET (Proposed)| 0.02 +0.01 |36.97+1.96| 0.97 +0.01

modeling combined with time-of-flight (PSF+TOF OSEM, 4 iterations x 5 sub-
sets), followed by Gaussian post-filtering (2 mm FWHM) [12,21], which were
regarded as the ground truth. To reduce GPU memory, we resized the images to
128 x 128 x 300. Since we did not obtain the system matrix of the instrument, we
used IRT to generate sinograms following the same process as described above.

3.2 Models and Metrics

Implementation Details. For all PET reconstruction results presented in this
paper, we used Adam optimizer with a learning rate of 1072 and a decay ratio
of 0.98 every 30 iterations. We used gradient clipping with a norm value of 1.0.
Based on empirical results, we set the number of training iterations to 3000,
to balance the utilization of the INR’s inherent priors and avoiding fitting the
noise. The optimization was performed on an NVIDIA Quadro RTX 8000 GPU.

Baselines. We consider three different reconstruction baselines: standard ML-
EM, Kernel methods (KEM) [28], and NMF incorporated with DIP (DIPNMF)
[32]. KEM integrates kernel matrix derived from prior knowledge into the EM
process, where we generate the kernel matrix as in [28]. DIPNMF employs multi-
ple CNNs to model the spatial distribution of PET data and an EM-based mul-
tiplicative update rule for temporal refinement. We adopt its publicly-released
implementation with the same parameter settings as in the published paper. The
number of iterations were empirically tuned for each baseline for best results.

Evaluation Metrics. We adopted mean squared error (MSE), peak signal-
to-noise ratio (PSNR) and the structural similarity index measure (SSIM) to
evaluate the reconstructed images. For ROI quantification and bias variance
analysis, we adopt the bias and standard deviation (SD) in ROIs as:

Bias = |0 — Vgrue|, SD =

1 1 & 1 g
ﬁ;h)i—ﬂ,l):E;m (6)

Vtrue Vtrue

where vty is the ground truth of ROI uptake, D is the number of test samples
set to 20, v; is the mean ROI uptake in the ith test sample.
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Fig. 2. Ground-truth and reconstructed PET images on simulated brain data, at frame
3 (low count) and 18 (relatively high count).
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Fig. 3. Ground-truth and reconstructed PET images on simulated thorax data.

3.3 Results

Results on Simulation Data. The quantitative metrics on both the brain and
thorax data are summarized in Table 1 with their respective visual examples
provided in Fig. 2 and Fig. 3. The PSNR and SSIM values annotated in the
figure are calculated for a single frame. In all results, as expected, KEM improved
MLEM yet still suffered from noises. DIPNMF further reduced noised, but led to
over-smoothness. In comparison, IMREPET achieved both reduced noises due
to the continuous INR representation, as well as improved details owing to the
ability of Fourier feature encoding to capture high-frequency information.

In terms of computation cost, without using neural networks as priors, ML-
EM and KEM required the least time (less than 10 seconds). DIPNMF, built on
the U-Net architecture, consumed approximately 1.7 hours to produce satisfac-
tory results. In contrast, IMREPET required less than 100 seconds to achieve
higher-quality results, highlighting its computational efficiency.

Fig. 4 presents the trade-off curves between the bias and SD on the tumor
ROI region. The curves were calculated by varying the iteration number from 40
to 100 with an interval of 10 for ML-EM and KEM, 8000 to 20000 with an interval
of 2000 for DIPNMF, 1200 to 3000 with an interval of 300 for IMREPET. As
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Fig. 4. Bias-SD trade-off for tumor ROI. Left to right: frame 3, 10, and 18.
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Fig. 5. Results of super-resolution. (a): True activity image with size of 256 x 256. (b)-
(d): 256 x 256 images obtained by interpolating the reconstructed 128 x 128 images.
(e) 256 x 256 images directly obtained from the INR in IMREPET.

shown, the bias decreased as the iteration number increased (i.e., from rightmost
to leftmost on each curve) for all methods. DIPNMF exhibited the largest bias
in frames 3 and 18. Although it achieved the smallest bias in frame 10, its
SD was the largest across all frames, demonstrating poor bias-SD balance. In
comparison, IMREPER achieved the lowest bias and SD in frame 18, the lowest
SD with relatively low bias in frame 10, and the lowest bias with relatively low
SD in frame 3, demonstrating improved bias-SD trade-off in the tumor ROI.

Super-Resolution Experiments. A well-known characteristic of INR is its
ability to achieve infinite resolution. To validate this feature, we generated sim-
ulated activity images with a resolution of 256 x 256. We subsequently down-
sampled them to 128 x 128 and derived sinograms from these low-resolution
activity images for reconstruction. Fig. 5(b)-(d) illustrate 256 x 256 images ob-
tained from 128 x 128 reconstructions from all methods using bilinear interpola-
tion. Fig. 5(e) shows the 256 x 256 image directly generated from the optimized
INR. The quantitative values calculated from 20 test samples demonstrated the
improved super-resolution ability of IMREPET.

Result of Real Patient Data: Fig. 6 shows the reconstructed images on the
real patient data. As expected, reconstruction results from ML-EM contained a
significant amount of noises. KEM reduced the noise considerably in the thorax
reconstruction, but not effective in the brain reconstruction. DIPNMF produced
much smoother images, but the brain reconstruction exhibited artifacts while
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Fig. 6. Reconstruction results of real patient data.
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Fig. 7. (a) Convergence of IMREPET with and without ¢ as input to INR. (b) Changes
of PSNR with the number of iterations and (c¢) PSNR box-plots, with different G values.

the heart region in the thorax reconstruction was inaccurate. This may be due
to the model’s complexity and limited generalizability. DIPNMF involves mul-
tiple U-Nets and many hyperparameters that require manual tuning. For fair
comparison, we used the same parameters across all subjects, which may have
led to suboptimal trade-offs. This also helps explain DIPNMF’s subpar perfor-
mance in the bias—SD trade-off evaluation on the simulated brain dataset. In
contrast, IMREPET effectively reduced noise while maintaining excellent detail
preservation.

Ablation studies: Fig. 7(a) shows the log-likelihood curve of IMREPET with
and without time ¢ as an input to the INR on the simulated brain data, including
only the portion when log-likelihood values > —1.24 x 10°. It can be observed
that the log-likelihood converged faster when ¢ was not modeled as an input to
INR. Fig. 7(b) tracks PSNR values over iterations when using different G values
in Fourier feature encoding on the simulated brain data, with G = 2 implying
no Fourier feature encoding. It indicated that INR, similar to DIP, first learns
the natural features of the image and then gradually fits the noises. We thus
set the number of iterations to 3000 with a learning rate decay of 0.98 every 30
iterations, and tested the effects of different G values on 20 simulated brain data
samples, as shown in the Fig. 7(c). Main results reported earlier used G = 256.
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Discussion and Conclusion. We presented the first INR-based approach to
dynamic PET reconstruction. Our results showed that IMREPT bridged the
gap between traditional iterative methods (efficient but noise-prone) and recent
DIP-based methods (over-smoothed and computationally expensive) to produce
smooth reconstructions with enhanced detail preservation and efficient compu-
tation. Its resolution-agnostic nature further opens up opportunities for high-
resolution imaging and super-resolution tasks. Future work will focus on extend-
ing IMREPET to handle real-world clinical datasets and exploring its integration
into clinical workflows to enhance PET imaging and diagnostic capabilities.
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