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Abstract. Recent advancements in Medical Vision-Language Models
(VLMs) have significantly improved medical cross-modal task perfor-
mance through large-scale contrastive pre-training. However, deploying
these large models in clinical settings is hindered by their computational
complexity and vulnerability to adversarial attacks. While knowledge
distillation offers a solution by transferring knowledge to efficient stu-
dent models, traditional methods usually ignore the robustness problem,
leaving models susceptible to adversarial attacks. To address these chal-
lenges, we propose a novel Dynamic Gradient and Hierarchical Feature
Alignment framework (DGHFA) for robust knowledge distillation. Our
approach introduces a dynamic gradient calibration mechanism for bal-
anced knowledge transfer and a hierarchical adversarial feature alignment
framework to enhance robustness under adversarial attacks. Extensive
experiments on two medical VLMs and downstream pathology and X-
Ray datasets demonstrate that our method outperforms state-of-the-art
approaches across multiple attack scenarios, achieving improvements of
2.3 and 1.7 percentage points in robust accuracy, respectively.
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1 Introduction

In recent years, large pre-trained Vision-Language Models (VLMs) have made
significant strides in cross-modal semantic understanding by aligning visual and
textual data into a shared embedding space [9,21]. Building on these advance-
ments, Medical VLMs have also achieved notable progress in fields such as
pathology and X-ray imaging [24, 33]. Leveraging large-scale contrastive pre-
training, these models capture intricate patterns in both medical visual and tex-
tual data, enabling effective adaptation to downstream medical tasks. To enable
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practical deployment of such models in clinical settings, Knowledge Distillation
(KD) provides a viable solution by transferring knowledge from large teacher
models to efficient models, substantially reducing computational burdens [8,20].

Nevertheless, deploying such models in safety-critical applications remains
challenging due to their vulnerability to adversarial attacks, where malicious
perturbations can disrupt the alignment between images and text, posing signif-
icant risks [10,22]. Traditional KD methods focus on preserving teacher model
accuracy by relying solely on natural samples, neglecting adversarial robustness.
This oversight renders student models susceptible to adversarial samples [6],
undermining their reliability. When distilling knowledge from foundation mod-
els, this issue is further exacerbated by their complex, high-dimensional feature
spaces [26]. Although Adversarial Training (AT) has proven effective in enhanc-
ing robustness [17,31], the limited capacity of student models often necessitates
a trade-off between accuracy and robustness, leading to suboptimal performance
in both aspects [25].

Recently, Adversarial Distillation (AD) has emerged as a promising approach
to enhance the robustness of distilled models by transferring robust knowledge
from well-trained teachers [4,18]. Methods such as Adversarial Robust Distilla-
tion (ARD) [6] and RSLAD [34] integrate adversarial training or leverage robust
soft labels to guide student learning. However, these conventional approaches
rely on pre-trained robust teachers, which may compromise the generalization
capacity of large foundation models [13], and focus solely on output-level align-
ment, thereby neglecting the teacher’s intricate decision-making signals. This
limitation hinders the student models’ ability to capture high-level semantic nu-
ances and undermines their overall robustness [11, 28]. Consequently, distilling
knowledge from adversarial-sensitive VLMs into lightweight models with robust-
ness remains an open challenge for safe clinical deployment.

In this paper, we propose a novel Dynamic Gradient and Hierarchical Fea-
ture Alignment (DGHFA) framework for robust distillation of medical VLMs,
which is inspired by the strong correlation between human perceptual gradients
and model robustness shown in recent works [5,23|. Specifically, Perceptually
Aligned Gradients (PAG) [1] proposed to enhance robustness by aligning model
gradients with human perceptual priors. However, obtaining such perceptual pri-
ors usually requires additional model training or costly annotations. Differently
from them, our method avoids manual annotations of human perception, and
instead leverages the loss gradients of pre-trained models, which naturally em-
phasize clinically salient features such as edges, textures, and other diagnostic
cues and align with human perception, to guide the distillation process. As a
result, the student model would focus on the most informative cues, thereby en-
hancing its predictive accuracy and adversarial robustness. Our contributions are
threefold: (i) A dynamic gradient calibration mechanism that leverages perceptu-
ally guided gradients to eliminate the need for pre-trained robust teachers while
preserving generalization capacity; (ii) A dual weighting strategy, combining
sample-adaptive weighting with class-aware gradient harmonization, to ensure
balanced and consistent knowledge transfer across heterogeneous architectures;
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Fig.1: Overview of our robust knowledge distillation framework DGHFA that
combines dynamic gradient and hierarchical feature alignment to enhance ro-
bustness of distilled VLMs on downstream datasets.

and (iii) A hierarchical adversarial feature alignment strategy that exploits inter-
mediate adversarial samples to optimize feature distributions between clean and
perturbed inputs, thereby enhancing decision boundary robustness. Extensive
experiments on pathology and X-ray datasets demonstrate that our approach,
leveraging domain-specific pre-trained VLMSs, not only maintains competitive
performance on clean samples, but also significantly improves robust accuracy
over state-of-the-art adversarial distillation and defense methods across multiple
attack scenarios, with gains of 2.3 and 1.7 percentage points, respectively.

2 Method

2.1 Problem Settings and Method Overview

Consider a pre-trained medical VLM teacher 7, which comprises a large image
encoder E;,, and a text encoder Fiy for visual-text alignment. Although 7T
achieves high accuracy on classification tasks, it is susceptible to adversarial
attacks [10,22]. In this work, we distill only the image encoder Ej,, into a
lightweight student model S, while keeping the teacher’s text encoder Fy;; fixed
for both teacher and student. Our objective is to preserve 7’s strong classification
performance in S, while enhancing adversarial robustness.

Fig. 1 illustrates an overview of our proposed method. First, we exploit the
teacher model’s gradient signals as perceptual guidance to strengthen S’s robust-
ness. Next, a dual adaptive weighting mechanism balances sample- and class-level
influences, ensuring more stable knowledge transfer. Finally, we introduce multi-
level adversarial samples to progressively align feature distributions, leading to
a more robust distillation process for medical VLMs.
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2.2 Gradient Calibration for Perceptual Guidance

Unlike previous works [1,5,23] that require costly annotations or extra train-
ing to obtain perceptually aligned gradients, we propose a gradient calibration
method that exploits the intrinsic gradient information provided by the teacher
and does not require human intervention.

Specifically, for a clean input image = and a text prompt p, both the teacher
model 7 and the student model S generate joint representations using their
respective image encoders Egng and Ei‘fng, along with their fixed shared text
encoder Eiy;. We introduce a gradient alignment loss, Lpag, which minimizes
the discrepancy between the gradients of the student model’s image encoder,

V0, S(,p), and those of the teacher model’s image encoder Vo, T (z,p):

img

»CPAG = Em,p |:||v9i1ng8(x7p) - VoimgT(x7p)H§:| (1)

where Vg, T (x,p) = 9Lce(T(x.)-9) denotes the gradient of the teacher model’s

Oimg
image encoder with respect to its parameters, and Vg, S(z,p) is defined simi-

larly for the student model. Here, T (x, p) and S(z, p) denote the predicted prob-
abilities by the teacher and student models, respectively. y denotes the ground
truth label, and Lcg is the cross-entropy loss.

2.3 Dynamic Weighted Gradient Training for Robustness

While the aforementioned gradient alignment loss effectively enhances model
robustness, it treats all samples and categories equally, neglecting the distinct
impact of sample and category differences on model robustness. Specifically,
difficult samples and vulnerable classes play a critical role in determining the
overall robustness of the model [19]. We address this limitation by introducing
sample- and category-level weighting to modulate the Lpag.

To prioritize hard-to-learn samples, we define a dynamic weight «(x) for each
input  based on the teacher model’s prediction confidence, where higher weights
are assigned to samples with low prediction confidence:

a(z) =1- s pax T(z,p)e (2)

where T (z,p). denotes the softmax confidence of the teacher for class ¢ given
input z and text prompt p. At the categoriy level, inspired by [32], we address
inter-class vulnerability by dynamically adjusting the category-specific weight
T. during training. It adaptively assigns larger weights to more vulnerable cat-
egories, as their effective learning largely contributes to the model’s overall ro-
bustness. The weight 7. is updated based on the category’s adversarial risk,
which is evaluated using adversarial sample £ and computed as:

t_ ,Tt—l — - R(S(jc,p)) — R(S(j’lz)) (3)
‘ maxye(1,...cy |[R(S(Zk,p)) — R(S(Z,p))|
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where R(S(Z.,p)) denote the average Cross-Entropy loss for all samples in cat-
egory ¢, R(S(&,p)) = & Z]C:l R(S(zj,p)) is the average error risk across all
categories, and v € (0, 1) is a scaling factor.

The Dual-Level Weighted Gradient Alignment Loss is computed as:

Lpwaa = éiEIEXc [(a(fU) +é- Tc> EPAG(HJ)] (4)

where C' is the number of categories, X'c¢ is the set of samples in category c, ¢
balances the influence of the category-level weight.

2.4 Hierarchical Perturbation Feature Alignment

Traditional adversarial training [17,31] enhances model robustness by aligning
features between clean and adversarial samples. However, existing methods rely
on the strongest adversarial samples [6,34], neglecting diverse information from
intermediate perturbation levels. We propose Hierarchical Perturbation Feature
Alignment (HPFA) by using adversarial examples at multiple perturbation lev-
els, which capture diverse decision boundary insights and mitigate over-fitting.

Let A = {i:}9_; denote a set of N,, adversarial samples generated using
a gradient-based attack, where s represents the perturbation strength, S is the
maximum perturbation strength, and NV, is the number of intermediate adver-
sarial samples. We align the features of these adversarial samples with those of
clean inputs to promote robust representation learning. To balance the contribu-
tions of adversarial samples with varying strengths during training, we introduce
a training time-varying weighting mechanism. The HPFA loss is defined as:

s
Lupra = Zws,t | Eqng () — Efmg(i‘é)H; , (@ €A (5)

s=1

where Eﬁng denotes the student model’s image encoder, and w;; is the weight
for adversarial sample 5 at epoch ¢ which progressively transitions from weaker
to stronger perturbations. It initially assigns larger weights to mild adversarial
examples for stable feature learning and gradually increases weights for stronger

perturbations to enable precise boundary refinement, and is computed as:
exp (5 -5 %)
Ws it = S .t
Yoo (89 F)

with T being the total number of training epochs and 8 a hyperparameter con-
trolling the rate of weight transition.

(6)

2.5 Optimization Process

The optimization process for our robust knowledge distillation method consists
of two key steps: inner maximization and outer minimization. In the inner maxi-
mization step, adversarial examples are generated by perturbing the input image
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x to maximize the dissimilarity between its representation and the corresponding
ground truth text representation. It is formulated as:

Z =argmax Lcr(S(@+6,p),y) st ||0]lcc <€ (7)
5

where S(z+4, p) denotes the logits output of the student model for the adversar-
ial example £ = x + 6. ¢ is a deliberate perturbation applied to the clean input,
Lcg is the cross-entropy loss, and € constrains the perturbation magnitude.

In the outer minimization step, the student model is optimized by transferring
knowledge from the teacher model. In addition to our robust distillation losses
Lpwaa and Lypra, we also follow standard knowledge distillation methods to
encourage consistent outputs between S and 7 by KL divergence and cross-
entropy losses:

T,
Cxp = E., | T(z,p)log L jj) (®)

Loy = Lce(S(x,p),y) + Lee(S(Z,p),y) + Lxu + MLpwea + A2Lupra  (9)

where A1 and Ay are coefficients to balance the corresponding loss terms.

3 Experiments

3.1 Experimental Setup

Models and Datasets We evaluated the effectiveness of our robust distilla-
tion method on two medical image datasets: the pathology dataset CRC100K
(nine classes, 100,000 training and 7,000 validation images) and the X-ray dataset
RSNA (two classes, 26,684 training and 3,000 validation images). Following [14,
29|, we split the dataset into train/valid/test sets with a ratio of 70%, 15%, and
15% for the classification task. For the teacher models, we adopt the pre-trained
foundation model Conch [14] (ViT-B-16) for pathology and CXR-CLIP [29]
(ViT-Tiny) for X-ray. Note that both VLMs did not see the downstream datasets
in the pre-training stage. For the student model, we use the ResNet-18 architec-
ture as the visual encoder.

Implementation details Our method was implemented in PyTorch on an
NVIDIA 4090 GPU with 24GB of memory. The image size and intensity were
normalized 224x224 and the range of [0,1], respectively. For distillation, we only
trained the visual encoder of the student for 50 epochs using an SGD optimizer
with an initial learning rate of 0.1, momentum of 0.9 and weight decay of 5x10~4.
The batch size was 128 and the hyper-parameters A; and Ao were set to 1, v and
B were set to 0.1 and 2. For the inner maximization, we use a 10-step PGD attack
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Table 1: Accuracy and Robustness comparison between different methods. The
first section shows methods without distillation from VLMs, while the second
section show methods using VLMs for distillation.

Method | Conch [14] - CRC100K | CXR-CLIP [29] — RSNA
| ACC FGSMPGD CW AA |ACC FGSMPGD CW AA
Baseline 92.7 62.6 56.2 49.7 445|782 356 33.7 324 29.5

PGD-AT [27] 75.8 72.6 678 64.2 62.7|70.2 56.8 52.3 524 46.7
RobustWRN [12] | 77.6 75.9 71.7 724 66.5|72.6 57.3 51.6 529 50.2

CTRW [15] 86.9 80.0 76.7 785 724|749 603 575 56.9 545

TRADES [30] 87.5 859 857 84.4 795|785 743 67.5 66.3 60.5
RSLAD |[34] 90.5 87.1 87.3 86.6 83.7|8l.3 785 683 68.6 63.6
AdaAD [11] 93.2 91.8 88.2 87.2 845|832 793 731 725 66.9

Ours 95.8 93.7 91.5 89.5 86.3| 8.4 80.7 75.2 74.4 68.4

Teacher(zero-shot) | 79.8 58.7 55.2 53.5 50.6 | 80.2 51.1 46.3 454 40.3
Teacher(finetuning) | 97.83 67.5 64.7 644 63.6 |89.5 62.7 59.2 60.3 54.5

with a random start size of 0.001, a step size of 2/255, and an L, perturbation
bound of € = 8/255.

We evaluated the model’s performance by measuring its accuracy on the
natural samples (referred to as clean accuracy) as well as its resilience to adver-
sarial attacks on the adversarial examples (referred to as robust accuracy). The
robust accuracy was measured by four widely used metrics, including: FGSM [7],
PGD [16], CW4 [2], and AutoAttack (AA) [3]. To calculate these metrics, we
set the maximum perturbation size to 8/255 and employed 20 steps for PGD
and CW, each with a step size of 2/255.

3.2 Comparison with State-of-the-art Methods

Firstly, our method was compared with three teacher-free robust training meth-
ods: PGD-AT [27], RobustWRN [12], and CTRW [15], without distillation from
pre-trained VLMs. They were also compared with the baseline method of stan-
dard training with cross entropy loss on the downstream dataset, without con-
sidering robustness. Then, we introduce VLMs as the teacher and compare our
method with three state-of-the-art adversarial distillation methods, including
TRADES [30], RSLAD [34], and AdaAD [11]. The results on the two datasets
are summarized in Table 1. The baseline obtained clean accuracies of 92.7% on
CRC100K and 78.2% on RSNA, respectively, but its robustness was only 44.5%
and 29.5% under AutoAttack (AA), respectively. Among the distillation-free ro-
bust training methods, CTRW [15] achieved the best robustness, i.e., 79.5% on
CRC100K and 54.5% on RSNA under AA, respectively. However, it leads to a
decrease of clean accuracy compared with the baseline.
Benefiting from the superior capabilities of large pre-trained VLMs, distillation-

based methods generally outperformed the distillation-free methods in Table 1.
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Fig. 2: Ablation study of our method.

Among the existing methods, AdaAD [11] achieved the best performance with a
clean accuracy of 93.2% and a robustness of 84.5% under AA on the CRC100K
dataset, and the corresponding values were 83.2% and 66.9% on the RSNA
dataset, respectively. In contrast, our method outperformed all the existing
methods in terms of all the metrics. For example, compared with AdaAD [11], it
improves clean accuracy and robustness (AA) by 2.6 and 1.8 percentage points
respectively on CRC100K. Additionally, Table 1 shows that our student model
significantly outperformed using the pre-trained teacher for zero-shot inference
in terms of both clean accuracy and robustness. Compared with fine-tuning the
teacher (with all parameters updated) on the downstream dataset, our method
has a close clean accuracy with much higher scores under all the robustness
metrics. These results demonstrate the effectiveness of our method in ensuring
model robustness, particularly in diverse adversarial attack scenarios.

3.3 Ablation Study

To analyze the impact of each component of our method on robustness, we
adopted standard adversarial distillation as the baseline and incrementally in-
corporated three key modules: PAG, DWGA and HPFA. Ablation study results
on the CRC100K dataset are presented in Fig. 2(a), which shows that the PAG
significantly enhances the robustness of the model. Furthermore, by replacing
PAG with DWGA and introducing HPFA, the robustness of the student model
is further improved. Our method has two key hyper-parameters, the ratio ¢ and
the number of intermediate samples N,, in Section 2.4. The results in Fig. 2(b)
show that ¢ = 2 obtains the best result, while a too small and too large value
leads to inferior results. In addition, Fig. 2(c) shows that generally a larger N,,
obtains a better result, and a plateau is obtained when N, > 6.

4 Conclusion

We propose a robust knowledge distillation framework tailored for medical foun-
dation models. We introduce a dynamic gradient calibration mechanism and
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hierarchical adversarial feature alignment for balanced robust knowledge trans-
fer. Thorough evaluation across two widely accessible medical VLMs and down-
stream datasets confirms the effectiveness of our method. Furthermore, this ap-
proach does not rely on robust teacher models and exhibits strong classification
performance inherited from the foundation model. Our work has the potential
to ensure the safe adoption of Med-VLMs before their deployment.
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