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Abstract. Accurate cancer segmentation in PET-CT images is crucial
for oncology, yet remains challenging due to lesion diversity, data scarcity,
and modality heterogeneity. Existing methods often struggle to effec-
tively fuse cross-modal information and leverage self-supervised learning
for improved representation. In this paper, we introduce C²MAOT, a
Cross-modal Complementary Masked Autoencoder with Optimal Trans-
port framework for PET-CT cancer segmentation. Our method employs
a novel modality-complementary masking strategy during pre-training
to explicitly encourage cross-modal learning between PET and CT en-
coders. Furthermore, we integrate an optimal transport loss to guide the
alignment of feature distributions across modalities, facilitating robust
multi-modal fusion. Experimental results on two datasets demonstrate
that C²MAOT outperforms existing state-of-the-art methods, achiev-
ing significant improvements in segmentation accuracy across five cancer
types. These results establish our proposed method as an effective ap-
proach for tumor segmentation in PET-CT imaging. Our code is available
at https://github.com/hjj194/c2maot.

Keywords: PET-CT Segmentation · Cross-modal Fusion · Self-supervised
Learning.

1 Introduction

Positron Emission Tomography-Computed Tomography (PET-CT) is a key imag-
ing modality in oncology, combining the metabolic insights provided by PET
with the anatomical details from CT [1]. PET images, using fluorodeoxyglucose
(FDG) as a radiotracer, highlights areas of high glucose uptake, which are often
indicative of tumors, while CT images provide high-resolution images crucial for
precise lesion localization and visualizing organ boundaries [25]. Therefore, ac-
curate tumor segmentation in PET-CT images is essential for enhancing tumor
⋆ Corresponding author
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detection, assessing disease staging, and evaluating treatment responses. This
capability plays a critical role in clinical applications such as radiation therapy
planning, surgical guidance, and ongoing disease monitoring [32,11,5].

Recent advancements in deep learning have shown promising results in au-
tomatic tumor segmentation in medical imaging. Models based on convolutional
neural networks (CNNs) have demonstrated significant capabilities in feature ex-
traction and segmentation tasks [10,20,19,33,17], while transformer-based archi-
tectures have shown exceptional performance in capturing long-range dependen-
cies and contextual information across image regions [28,14,4,6]. Despite these
advances, tumor segmentation in PET-CT still faces three major challenges. (1)
Data scarcity: The limited availability of labeled PET-CT data and the high
cost of manual annotation hinder model training. (2) Lesion diversity: Tumors
vary in size, shape, and location, making accurate segmentation difficult. This
is particularly problematic for metastatic tumors that can appear in multiple,
spatially distributed locations. (3) Modality heterogeneity: PET and CT pro-
vide complementary but distinct information, and existing methods struggle
to effectively align feature distributions between these modalities and maintain
consistent feature representations.

Current approaches have attempted to address these challenges but with lim-
ited success. To tackle data scarcity, self-supervised learning (SSL) has gained
significant attention for its ability to leverage unlabeled data in medical imag-
ing [18]. Approaches such as contrastive learning (e.g., SimCLR [7], MoCo [16]),
masked image modeling (e.g., MAE [15], SimMIM [31]), and self-distillation
methods (e.g., DINO [3], BYOL [13]) have shown promise in pre-training mod-
els on large datasets without requiring manual annotation. However, most SSL
methods focus on individual modalities and often fail to capture the complemen-
tary information provided by multiple imaging modalities, such as PET and CT.
For the lesion diversity challenge, augmentation techniques and multi-scale archi-
tectures have been proposed [19], but these methods often fail to generalize across
different tumor types and locations. To address modality heterogeneity, early fu-
sion methods relied on simple strategies like concatenation or weighted averaging
of features from each modality [2]. While these approaches provide some benefit,
they often struggle to fully exploit the complementary nature of the modalities
due to differences in their resolutions, intensities, and noise characteristics [21].
More sophisticated approaches, such as attention mechanism-based models, have
been developed to enable more nuanced interactions between modalities [23].
Cross-modal attention mechanisms effectively capture contextual dependencies
by dynamically weighting modality-specific features. Despite these efforts, chal-
lenges remain in effectively aligning feature distributions between modalities and
maintaining consistency in feature representation across different modalities.

In this paper, we propose a novel pre-training segmentation framework,
C2MAOT, which integrates cross-modal complementary masking and optimal
transport (OT)-guided multi-modal fusion. Our method addresses three key chal-
lenges in multi-modal tumor segmentation. First, we tackle data scarcity through
a self-supervised pre-training approach that effectively leverages unlabeled PET-
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Fig. 1. Overview of the proposed C2MAOT framework. It consists of two main com-
ponents: pre-training and fine-tuning for downstream segmentation tasks.

CT data. Second, our method addresses lesion diversity via a spatially-aware
complementary masking strategy specifically designed for the distributed nature
of tumors. By forcing the model to reconstruct complementary regions across
modalities, it enhances cross-modal learning within the PET-CT domain, im-
proving the representation of diverse tumor patterns present in the training
distribution. Third, we overcome modality heterogeneity by introducing an OT
loss to guide the alignment of feature distributions between PET and CT, en-
abling more effective multi-modal fusion and ensuring consistency in feature
representations across modalities.

Our contributions are three-fold: (1) We introduce a novel cross-modal com-
plementary masking strategy for self-supervised pre-training, which explicitly
facilitates information exchange between PET and CT encoders while improving
the model’s ability to handle spatially diverse tumor presentations. (2) An opti-
mal transport loss guides the alignment of feature distributions across modalities,
leading to a more effective fusion of PET and CT features. (3) Extensive evalu-
ation of C2MAOT on two datasets demonstrates that our method significantly
outperforms SOTA methods, achieving substantial improvements in segmenta-
tion accuracy across five tumor types.

2 Methodology

The framework of our proposed C2MAOT is shown in Fig. 1. During the pre-
training phase (Fig. 1 (a)), PET and CT images are first masked using modality-
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complementary masking. These masked images are then passed through separate
encoders, producing feature maps from the intermediate layers. As depicted in
Fig. 1 (b), we compute the 1-Wasserstein distance between the corresponding CT
and PET features at each layer, resulting in the total OT loss LOT . The features
from both encoders are concatenated and fed into a decoder for reconstruction.
The reconstruction loss (LCT

R and LPET
R ) is calculated for the masked regions.

The overall pre-training loss is defined as:

L = LCT
R + LPET

R + LOT . (1)

After pre-training, the encoder weights are transferred to the downstream tumor
segmentation task. (Fig. 1 (c)).

2.1 Pre-training Backbone

Our pre-training backbone employs an adapted 3D U-Net [10] architecture,
which continues to offer superior performance for volumetric medical imag-
ing compared to Transformer-based methods when considering the critical bal-
ance between model effectiveness, parameter efficiency, and computational de-
mands. Departing from conventional multimodal approaches like nnU-Net [20]
that channel-concatenate modalities for single-encoder processing, our architec-
ture implements dual independent encoders specifically optimized for PET-CT
imaging. This allows the model to explicitly extract modality-specific features in
the encoder stage, enhancing the representation of each modality’s unique char-
acteristics. The decoder receives skip connections and bottleneck features from
both encoders, which are concatenated along the channel dimension to effectively
combine the modality-specific information.

2.2 Modality-Complementary Masked Autoencoder

Inspired by He et al. [15], our pre-training employs a mask-and-reconstruction
strategy. While vanilla MAE randomly masks patches in a single modality,
PET and CT images—acquired simultaneously for the same patient—share sim-
ilar anatomical and semantic structures. Therefore, we propose a modality-
complementary masking strategy by randomly masking 50% of the 3D patches
(8 × 8 × 8) in a complementary manner: for corresponding regions, if a PET
patch is masked, the CT patch is kept intact, and vice versa. This design strate-
gically compels the network to learn and integrate complementary information
from the paired modality to complete the masked modality’s missing data dur-
ing reconstruction, effectively fostering deep cross-modal representation learning.
Consistent with MAE, the reconstruction loss is computed solely over the masked
regions using the standard L2 (MSE) loss formulation. The reconstruction losses
for the PET and CT are defined as follows:

LPET
R =

1

N

N∑
i=1

∥PPET
i − P̂PET

i ∥22, LCT
R =

1

N

N∑
i=1

∥PCT
i − P̂CT

i ∥22, (2)
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where PPET
i and P̂PET

i represent the original and reconstructed voxel inten-
sities for the i-th voxel of the PET image, respectively, and similarly for CT.
These separate losses allow the model to optimize each modality independently,
ensuring better reconstruction accuracy for both PET and CT images during
the training process.

2.3 Optimal Transport Loss for Cross-Modal Feature Alignment

In order to effectively fuse features from PET and CT images while mitigating
modality discrepancies, we introduce an Optimal Transport (OT) loss. OT is a
method for measuring the difference between two modality feature distributions,
with the goal of minimizing the transportation cost between them [26]. PET
and CT images often exhibit differences in intensity distributions, resolution,
and noise characteristics, making direct comparison or fusion of their features
challenging. The OT loss helps to align the features from both modalities, fa-
cilitating better fusion while preserving each modality’s unique characteristics.
The core idea behind the OT distance is that, given two distributions, we aim
to find an optimal mapping that minimizes the transportation cost between the
two distributions. The cost is determined by calculating the distance between
corresponding features. To achieve this, we use the 1-Wasserstein distance [27],
which provides an effective way to measure the minimal transportation cost be-
tween two distributions. In our implementation, the features from PET and CT
are extracted using two separate encoders, resulting in feature maps denoted as
FPET and FCT , respectively. The 1-Wasserstein distance is defined as:

W1(FPET ,FCT ) = inf
γ∈Γ (FPET ,FCT )

E(x,y)∼γ [∥x− y∥], (3)

here, E represents the expectation, which refers to the average distance between
the feature pairs (x,y). inf is the infimum, representing the minimum trans-
portation cost across all possible transport plans. In simpler terms, this equation
means that we seek to find a mapping γ that minimizes the cost of transferring
features from the PET distribution to the CT distribution. To prioritize deeper
features in the alignment process, we introduce a layer-specific weighting fac-
tor wl, which increases exponentially with depth. Deeper layers tend to capture
more abstract, modality-invariant semantic information that is critical for down-
stream tasks like tumor segmentation. In practice, we set the weights to follow
an exponential growth, i.e., wl = αl, where α > 1 is a constant that controls
the rate of growth. The final OT loss LOT is computed as the weighted sum of
1-Wasserstein distances across all layers:

LOT =

N∑
l=1

wl ·W1(F
(l)
PET ,F

(l)
CT ), (4)

where N is the number of layers in the encoder, F(l)
PET and F

(l)
CT represent the

feature maps at the l-th layer for PET and CT, respectively, and wl is the weight
associated with the l-th layer.
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3 Experiments and Results

3.1 Datasets and Evaluation Metric

Datasets The study utilized PET-CT data from two sources: the AutoPET III
Dataset [12] and an In-house Breast Dataset. The AutoPET III Dataset pro-
vided 1,014 cases (501 tumor-positive, 513 control) covering lung cancer, lym-
phoma, and melanoma. The In-house Breast Dataset contributed 393 cases (287
tumor-positive, 106 control) of primary and metastatic breast cancer (BC). We
allocated 50% of the AutoPET III Dataset for pre-training, with the remaining
data used alongside the In-house Breast Dataset for downstream segmentation
evaluation.
Evaluation Metric Model performance was assessed using four metrics: Dice
Similarity Coefficient (DSC), Intersection over Union (IoU), recall, and precision.
DSC and IoU measure spatial overlap between predicted and ground truth seg-
mentations, while recall and precision evaluate detection accuracy and reliability
respectively.

3.2 Implementation Details

Experiments were conducted using Python 3.11, PyTorch 2.4.1, and Ubuntu
22.04 on dual NVIDIA 4090 GPUs (24GB memory each), with a patch size of
128×128×128. Pre-training employed the Adam optimizer (initial learning rate:
1 × 10−4, batch size: 2) for 500 epochs, including a 10-epoch warm-up period.
Learning rate decay followed a polynomial strategy:

lr = initial lr ×
(
1− epoch

max epoch

)0.9

. (5)

For both pre-training and tumor segmentation fine-tuning, we applied compre-
hensive data augmentation including geometric transformations, intensity mod-
ifications, and random noise. Fine-tuning maintained the initial learning rate
and decay strategy, with training combining cross-entropy and dice loss over
1000 epochs with 250 iterations each.

3.3 Quantitative and Qualitative Results

Comparison with Existing SOTA Methods To evaluate the effectiveness
of our method, we compared it with advanced segmentation methods including
nnUNet [20], UNETR [28], 3DUX-Net [22], and U-Mamba [24], as well as SSL
methods such as MoCov3 [8], MAE3D [9], Swin-MM [29], and VoCo [30] that
utilize 3D UNet as the backbone. As shown in Table 1, our method achieved
the highest or near-highest scores across all metrics including DSC, IoU, re-
call, and precision. Quantitatively, the average DSC surpasses the second-best
method by 1.15% and the average IoU improves by 1.04%. Notably, with the ex-
ception of MoCov3 (which may be attributed to its requirement for large batch
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sizes to obtain sufficient negative samples), self-supervised pretraining generally
enhanced the performance of baseline models, demonstrating the potential of
self-supervised methods in improving segmentation performance. The qualitative
results in Fig. 2 further illustrate that our method generates segmentation results
closely aligned with ground truth, with fewer instances of over-segmentation and
under-segmentation, particularly for dispersed lesions such as metastatic breast
cancer, lymphoma, and melanoma.

Table 1. Comparison for tumor segmentation. The evaluation metrics include DSC,
IoU, Recall, and Precision in (%). Best results are shown in bold, while second-best
results are underlined.

Category Metrics From Scratch With General SSL With Medical SSL

nnUNet UNETR 3DUX-Net U-Mamba MoCov3 MAE3D Swin-MM VoCo Proposed

Primary
Breast Cancer

DSC 83.32 79.13 78.88 82.80 82.17 84.43 85.25 87.02 88.18
IoU 71.41 65.47 65.13 70.65 69.74 73.28 74.46 77.49 78.86
Recall 83.64 78.79 79.36 90.27 82.04 85.44 87.52 88.27 89.39
Precision 84.28 82.85 81.60 83.48 81.89 85.23 86.62 87.84 87.37

Metastatic
Breast Cancer

DSC 51.56 54.38 55.49 44.50 49.72 55.85 57.65 57.13 59.47
IoU 34.73 37.34 38.40 28.62 33.08 38.74 40.50 40.27 42.32
Recall 55.35 62.56 59.64 49.89 52.41 57.83 64.72 71.46 72.43
Precision 54.25 54.74 58.28 50.38 51.28 56.27 63.39 72.11 73.66

AutoPET III
Lesions

DSC 50.33 46.58 46.59 34.85 50.45 53.48 55.76 57.40 57.34
IoU 33.63 30.36 30.37 21.10 33.73 36.50 38.66 40.50 40.19
Recall 38.85 37.09 36.68 34.15 37.72 40.53 39.48 41.29 42.50
Precision 45.24 43.18 44.10 37.72 43.63 46.85 47.32 46.43 46.22

Average

DSC 61.74 60.03 60.32 54.05 60.78 64.59 66.22 67.18 68.33
IoU 46.59 44.39 44.63 40.12 45.52 49.51 51.21 52.75 53.79
Recall 59.28 59.48 58.56 58.10 57.39 61.27 63.91 67.01 68.11
Precision 61.26 60.26 61.33 57.19 58.93 62.78 65.78 68.79 69.08

Ground Truth 3D UNet UNETR 3DUX-Net U-Mamba MoCov3 MAE3D Swin-MM VoCo Proposed

Fig. 2. Visualization of tumor segmentation. Red: primary breast cancer; Green:
metastatic breast cancer; Orange: lung cancer, lymphoma and melanoma. Cyan: circles
and arrows indicate over- and under-segmentation errors, respectively
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A
B

B𝐷𝑖𝑛𝑡𝑒𝑟 = 80.65 𝐷𝑖𝑛𝑡𝑒𝑟 = 75.37 

𝐷𝑖𝑛𝑡𝑟𝑎 = 37.47 𝐷𝑖𝑛𝑡𝑟𝑎 = 39.45 

𝑅𝑖𝑛𝑡𝑒𝑟/𝑖𝑛𝑡𝑟𝑎 = 2.15 𝑅𝑖𝑛𝑡𝑒𝑟/𝑖𝑛𝑡𝑟𝑎 = 1.91 

Fig. 3. T-SNE visualization of the CT and PET feature spaces. (A) Without OT loss,
(B) With OT loss. Blue represents CT features, yellow represents PET features.

Table 2. Ablation study results on the average DSC (%).

Experimental Setting Category

Baseline OT-Loss MC-Mask Primary-BC Metastatic-BC AutoPET AVG

✓ 85.12 53.42 52.08 63.54
✓ ✓ 86.03 55.14 53.78 64.98
✓ ✓ 85.74 57.13 55.26 66.04
✓ ✓ ✓ 88.18 59.47 57.34 68.33

Ablation Study Table 2 demonstrates the contribution of key components
to the model’s performance. Starting with the baseline model (trained from
scratch), we first introduce the OT loss, which leads to improvements in the DSC
across all tumor types, with an average DSC increase of 1.44%. Incorporating
the Modality-Complementary Mask (MC-Mask) further enhances performance,
particularly for more dispersed tumors, resulting in a more substantial average
DSC increase of 2.5%. The effect of OT loss can be visualized in Fig. 3, which il-
lustrates its impact on feature distribution alignment. As shown, OT loss reduces
the inter-modality distance while increasing intra-modality dispersion, decreas-
ing the inter-to-intra ratio from 2.15 to 1.91, which indicates a more optimal fea-
ture space organization where different modalities are better aligned while pre-
serving richer feature representations within each modality. This demonstrates
that OT loss effectively promotes feature space consolidation while preserving
modality-specific characteristics, facilitating more robust cross-modal fusion.

4 Conclusion

In this study, we proposed C2MAOT, a novel pre-training segmentation frame-
work specifically designed to address the challenges of cancer segmentation in
PET-CT images. Our method leveraged a modality-complementary masking
strategy within a masked autoencoder architecture to promote explicit cross-
modal interaction and learning between PET and CT encoders. By incorporat-
ing an OT loss, our proposed method effectively aligned feature distributions
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from both modalities, leading to enhanced and robust multi-modal feature fu-
sion. Extensive experimental results on two datasets, covering a range of cancer
types, conclusively demonstrated that our method achieved state-of-the-art seg-
mentation performance, surpassing existing supervised and self-supervised ap-
proaches. The significant improvements observed underscored the efficacy of our
complementary masking and OT guided fusion in capturing and integrating the
complementary information inherent in PET-CT images. This work established
C2MAOT as a promising approach for advancing accurate and reliable cancer
segmentation in multi-modal medical imaging.
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