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Abstract. Image-to-Image translation models can help mitigate various
challenges inherent to medical image acquisition. Latent diffusion models
(LDMs) leverage efficient learning in compressed latent space and con-
stitute the core of state-of-the-art generative image models. However,
this efficiency comes with a trade-off, potentially compromising crucial
pixel-level detail essential for high-fidelity medical images. This limita-
tion becomes particularly critical when generating clinically significant
structures, such as lesions, which often occupy only a small portion of the
image. Failure to accurately reconstruct these regions can severely impact
diagnostic reliability and clinical decision-making. To overcome this lim-
itation, we propose a novel post-training framework for LDMs in medical
image-to-image translation by incorporating lesion-aware medical pixel
space objectives. This approach is essential, as it not only enhances over-
all image quality but also improves the precision of lesion delineation.
We evaluate our framework on brain CT-to-MRI translation in acute
ischemic stroke patients, where early and accurate diagnosis is critical
for optimal treatment selection and improved patient outcomes. While
diffusion MRI is the gold standard for stroke diagnosis, its clinical utility
is often constrained by high costs and low accessibility. Using a dataset
of 817 patients, we demonstrate that our framework improves overall im-
age quality and enhances lesion delineation when synthesizing DWI and
ADC images from CT perfusion scans, outperforming existing image-
to-image translation models. Furthermore, our post-training strategy is
easily adaptable to pre-trained LDMs and exhibits substantial potential
for broader applications across diverse medical image translation tasks.
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1 Introduction

Medical imaging plays a crucial role in modern medicine, providing spatially re-
solved information of organs and tissues. Various imaging modalities offer unique
clinical insights with distinct advantages and limitations based on their underly-
ing physical principles. In the context of acute stroke management where "time
is brain", rapid imaging for diagnosis is crucial as timely intervention directly
impacts patient outcomes [22JT9]. Computed tomography (CT) is frequently uti-
lized due to its widespread availability, short acquisition times, and low cost.
Although CT can detect early signs of acute ischemic stroke, these indicators
are often subtle or absent within the initial hours following stroke onset, leading
to suboptimal sensitivity and inter-rater agreement [3]. In contrast, diffusion-
weighted imaging (DWI) on magnetic resonance imaging (MRI) offers superior
sensitivity for detecting acute ischemic stroke and distinguishing stroke mimics
[8/4]. However, MRI has several limitations compared to CT, including higher
costs, restricted accessibility, longer scan durations, and challenges related to
patient intolerance or contraindications.

With the recent explosion of image generative models, there has been wide
interest in medical image-to-image translation model development to help over-
come challenges in medical image acquisition [IJI2]. In recent years, diffusion
models have surpassed generative adversarial networks (GANs) as state-of-the-
art image generation models [6]. Latent diffusion models (LDMs) have emerged
as a particularly efficient approach, operating within a compressed latent space
to improve both computational efficiency and generative performance [20]. More-
over, LDMs demonstrated promising results in various medical imaging applica-
tions, including image synthesis [I8], super-resolution [16], and image-to-image
translation [I2]. However, LDMs learn the diffusion process only in the latent
space and often freeze the decoder, potentially overlooking high-frequency im-
age details. Existing methods have limitations in addressing this challenge ef-
fectively. Only recently, few studies have explored post-training techniques for
LDMs incorporating image space objectives for sharper and more realistic image
generation [225]. In medical imaging, this challenge intensifies when generating
clinically significant structures, such as lesions, which often show low spatial oc-
cupancy. Deficiencies in this reconstruction can substantially degrade diagnostic
reliability and subsequent clinical decision-making.

In this study, we propose a novel post-training framework for LDMs in medi-
cal image-to-image translation with lesion-aware medical image space objectives.
Our method incorporates medical image space loss to generate more realistic
medical images. In addition to the pixel loss for overall image quality, we intro-
duce a task-specific objective for ischemic lesion areas to enhance the accuracy
of lesion delineation. Evaluation on a diffusion MRI-CT perfusion paired dataset
from 817 acute ischemic stroke patients demonstrate that our LDM post-training
framework outperforms state-of-the-art models in both qualitative and quanti-
tative evaluations. Moreover, we apply our framework to other diffusion models
that utilizes the latent space, demonstrating its adaptability and potential for
broad utility in diverse medical image generative tasks.
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Fig. 1. Previous models fail to accurately depict ischemic stroke lesion in diffusion MRI
synthesized from CT perfusion. Our model (right) shows higher lesion conspicuity (red)
and enhanced image fidelity, highlighted with grey-white matter differentiation (blue).

2 Method

2.1 Base Conditional Latent Diffusion Model

Given an axial slice of target MRI images & € R¥*"WX™ with m modalities con-
catenated into channels, our base model is a conditional LDM with the VQGAN
[7] framework where the encoder £ encodes the images into latent representa-
tions z = £(x). The decoder D learns to reconstruct latent representations back
into MRI images as @ = D(z). The corresponding axial slice of the CTP image
c € REXWXn with n time points is used as the input condition for the CTP-
to-MRI translation diffusion process. To align the CTP image ¢ with the latent
representation z of MRI images, we follow the standard procedure for semantic
synthesis with LDMs [20]. A bilinear interpolator combined with 1x1 convolu-
tions is used as a spatial rescaler F to downsample ¢ into ¢ = F(c¢), then € is
fed into the diffusion process by channel-wise concatenation.

The conditional LDM learns the latent distribution of the MRI images py(z)
by learning denoising conditional autoencoders €y(z:,t,€) from the sequence
of noisy images {zo, ..., zr}. The forward process that diffuses the latent input
zo = z with pre-defined Gaussian noise schedules {1, ..., fr} is a Markov process

formulated as:
q(zt]zi-1) = N(ze; V1 = Bezia, BiD), (1)

which allows sampling during training via:

q(zt]z0) = N (2 Vauzo, (1 — ay)I), (2)

where a; = 1 — 3 and & = Hle ;. The reverse process that denoises noisy
images is formulated with a time-conditional UNet [2I] with parameters 6 as:

p(zt—1 |Zt, é) = N(zt—1§ ,UG(ztz t, 5)7 Ze(zn t, 5)) (3)

After parameterizing pg(z¢,t,¢) = \/%(zt — \}%eg(zt,t,é)) and simplifying

Xy(z,t,¢) = 071, the latent objective for the conditional LDM trained to pre-
dict € is given as:

Liatent = EE(m)7e,t[||6 - GG(Zta t, é)H%] (4)

Detailed illustration of the model is shown in Figure
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Fig. 2. Overview of our post-training framework. During post-training, in ad-
dition to the latent objective for the conditional LDM Ljstent, we introduce medical
image space objectives Limage, Liesion t0 enhance overall image quality and lesion
conspicuity.

2.2 Lesion-Aware Image Space Objectives for LDM Post-Training

We introduce medical image space objectives for LDM post-training to improve
overall image quality and allow ischemic lesion-aware diffusion MRI generation.
Recent studies show post-training LDMs with image space objectives can lead
to sharper and more realistic natural images [2I25]. For image generation in
domains where high image detail is essential such as medical imaging [I], remote
sensing [23], or face generation [I3], post-training LDMs with task-specific image
space objectives can be particularly beneficial.

Given a MRI image x and its latent representation z = &(x), the noisy
version of z is sampled as z; = /ayz + /1 — ;e during training. We then
project the estimated noise free latent 2z given as:

5 — Zt — Vl *&tee(zhtaé)
0 \/5775 )

back to the image space using the decoder D to get & = D(2). This formulation
allows fast and efficient one-step inference of 2y and thus & during training
instead of the iterative denoising steps of the standard inference process [2/10].
The image space objective is then defined as:

()

£image = Ef(m),e,t[”w - D(ﬁo)”g] (6)
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One of the main challenges of CTP-to-MRI translation is training the model to
accurately generate ischemic lesions that constitute only a small portion of the
voxels in the dataset. We believe standard objectives covering the entire image or
latent representations are insufficient to train the model to precisely generate le-
sions because the gradients to guide the model to generate lesions is diluted with
signals from other brain parenchyma or even less important background voxels.
To boost accurate ischemic lesion generation, we designed a new image space
objective focusing only on ischemic lesion regions. The lesion-aware objective is
formulated as:

Liesion = Eg(m),e,t[”Mlesion(w) © (:B - D(’éo))ng]v (7)

where Micsion(z) € RE*W is a binary mask for the ischemic lesion. The fi-
nal objective function combining the latent and image space losses with hyper-
parameters Ajmage, Alesion 1S given as:

ACtotal = £latent + Aimage . £ivnage + )\lesion . ‘Clesion- (8>

3 Experiments

3.1 Experimental Setup

Dataset All images used in this study were collected from the Seoul National
University Hospital (SNUH) with approval from its Institutional Review Board.
MRI scans including diffusion-weighted imaging (DWI) were acquired using 3.0T
scanners with voxel size of 0.9375%x0.9375 mm to 1x1 mm (in-plane) and 4-5
mm (axial slice thickness). The images were skull-stripped then resampled to a
uniform voxel size of 1x1x5 mm?.

Apparent diffusion coefficient (ADC) maps were derived from the DWI image
(b=1000), and was used for ischemic lesion segmentation by medical experts to
create ground truth lesion masks. CTP scans were acquired using Aquilion 64 CT
scanner (TOSHIBA) with voxel size of 0.47x0.47x1 mm? and spanning 15 time
points. To align CTP images with MRI images, CTP images were skull-stripped
then registered into the DWI space using ANTs [24].

The final dataset comprised of paired DWI, ADC, and CTP images with is-
chemic lesion masks from 817 patients. The dataset were randomly divided into
training (571 patients; 14083 axial slices), validation (81 patients; 1948 axial
slices), and test (165 patients; 4015 axial slices) sets. Across the training, vali-
dation, and test sets, slices containing lesions constituted 10.9% (1542/14083),
11.3% (220/1948), and 11.0% (441,/4015), respectively, with mean (£SD) lesion
volumes of 15.174+41.17 ml, 12.46+32.94 ml, and 14.66+36.24 ml.

Implementation Details Implementation of our model was based on the LDM
[20] framework with VQGAN [7] that compresses the image space into the latent
space by a factor of 4 in both coronal and sagittal directions. The model was
trained with the AdamW [17] optimizer with base learning rate of 2 x 107°.
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Fig. 3. Visualization of synthesized diffusion MRI images from CTP images
in acute ischemic stroke patients. Our model with post-training (cLDM-PT) excels
in lesion delineation (red arrows), accurately depicting ischemic stroke lesions with
restricted diffusion (red contour) based on hypo-perfused regions in source CTP images.
(Top) A case with infarct core in the left inferior frontal area. (Middle) A case of acute
ischemic stroke by large vessel occlusion in the right middle cerebral artery. (Bottom)
A case of acute infarction in the left occipital lobe.

The model was trained with T = 1000 diffusion steps, with 200 DDIM sampling
steps used during inference. For LDM post-training, Ajpmqege = 0.01,0.05,0.1 were
tested and several Ajeqion values were selected accordingly. We selected Ajpage =
0.01, A\jesion = 0.02 as the hyper-parameters of our best model. All experiments
were conducted using the NVIDIA A6000 GPU with a batch size of 48. Our code
is publicly available at https://github.com/snuh-rad-aicon/Diffusion- LAPT.

Evaluation Metrics To evaluate diffusion MRI synthesis, we used both dis-
tortion and perception measures to compare ground truth @ with synthesized
image #. The mean absolute error (MAE) measures accuracy of image recon-
struction, and to evaluate lesion delineation we additionally defined lesion MAE
as: Lesion MAE = (3~ Micsion(®) ® |2 — &|)/ Y Micsion(x). Peak signal-to-noise
ratio (PSNR) assesses reconstruction quality. The multi-scale structural sim-
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Table 1. Quantitative results of DWI and ADC synthesis from CTP.

DWI ADC
Lesion MS- Lesion MS-
Model MAE] MAE] PSNRTSSIMT FID| MAE] MAE] PSNRTSSIMT FIDJ]
CycleGAN 0.143 0.235 20.04 0.803 40.62 0.321 0.151 12.20 0.602 65.95
Pix2Pix 0.083 0.215 26.25 0.859 46.90 0.073 0.127 26.52 0.872 70.64
PairedCycleGAN  0.123 0.223 21.86 0.865 47.96 0.081 0.124 25.55 0.883 70.34
BBDM 0.104 0.225 24.19 0.787 31.84 0.103 0.136 23.10 0.764 66.81
cBBDM 0.093 0.226 25.21 0.800 32.32 0.098 0.139 23.63 0.777 66.98
cLDM 0.073 0.222 27.94 0.855 30.82 0.072 0.125 27.08 0.866 66.71

cLDM-PT(ours) 0.072 0.199 27.78 0.867 29.95 0.052 0.105 31.49 0.876 61.91

ilarity index measure (MS-SSIM) measures the similarity between images at
multiple resolutions. The perceptual quality of the synthesized MRI images was
measured using the Fréchet Inception Distance (FID) [9].

Baselines We compared the performance of our model with state-of-the-art
models, including models based on generative adversarial networks (Pix2Pix [11],
CycleGAN [26], PairedCycleGAN [5]) and latent diffusion (conditional LDM [20],
BBDM [15], conditional BBDM [14]).

3.2 Experimental Results

Quantitative Results We observe a clear improvement from conventional
methods in our refined latent diffusion model, cLDM-PT, which was optimized
via our proposed post-training framework (Table . For both DWI and ADC
generation, our cLDM-PT model achieved the lowest MAE, highest MS-SSIM,
and lowest FID, indicating marked improvements in accuracy, clarity, and struc-
tural fidelity. Furthermore, our model achieved the lowest lesion MAE of 0.199
for DWI and 0.105 for ADC images, which underlines its enhanced capability for
precise lesion delineation. Overall, our model showed 14.5% deduction in image
MAE and 12.4% deduction in lesion MAE after post-training.

Qualitative Evaluation Figure [3] visualizes synthesized DWI and ADC from
CTP of acute ischemic stroke patients with lesions in various brain regions. Due
to low signal-to-noise ratio of CTP, it is difficult to accurately estimate ischemic
core volumes. Small infarcts such as lacunar infarcts are also poorly visualized
in CTP. These factors make it challenging for generative models to accurately
reconstruct ischemic lesions in synthesized MRI. While the diffusion model series
generates more realistic images compared to GAN-based models, they encounter
difficulty in lesion delineation. Our model, cLDM-PT, excels in lesion delineation
and demonstrates exceptional ability to generate accurate and detailed images.
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Table 2. Effect of image space loss weights on DWI and ADC synthesis from CTP.

Loss Weights DWI ADC

Lesion Lesion
Aimage  Aesion MAE] MAE] PSNRTSSIMT FID| MAE] MAE] PSNRTSSIMT FIDJ|

0 0 0.073 0.222 27.94 0.855 30.82 0.072 0.125 27.08 0.866 66.71
0.01 0 0.074 0.202 27.48 0.867 31.08 0.054 0.109 30.89 0.876 61.84
0.01 0.01 0.078 0.198 26.70 0.867 30.50 0.054 0.106 30.76 0.877 64.00
0.01 0.02 0.072 0.199 27.78 0.867 29.95 0.052 0.105 31.49 0.876 61.91
0.01 0.05 0.077 0.196 27.15 0.865 30.74 0.058 0.093 29.33 0.878 61.52
0.05 0 0.077 0.212 27.05 0.863 30.66 0.058 0.116 29.73 0.874 64.62
0.05 0.1 0.077 0.195 27.00 0.853 30.06 0.060 0.093 29.70 0.865 62.90
0.05 0.2 0.072 0.197 27.87 0.859 32.42 0.086 0.083 24.37 0.876 63.28
0.1 0 0.077 0.210 27.15 0.861 31.27 0.061 0.111 29.27 0.873 64.71
0.1 0.1 0.073 0.197 27.33 0.862 31.09 0.071 0.091 26.88 0.876 63.44
0.1 0.2 0.073 0.197 27.42 0.855 33.70 0.083 0.090 24.75 0.868 62.42

Table 3. Evaluating the application of our post-training framework on cBBDM.

DWI ADC
Lesion Lesion
Model MAE] MAE] PSNRTSSIMT FID| MAE] MAE] PSNRTSSIMT FID|
cBBDM 0.093 0.226 25.21 0.800 32.32 0.098 0.139 23.63 0.777 66.98
cBBDM-PT 0.078 0.221 27.40 0.857 31.55 0.074 0.120 26.62 0.866 66.67

Impact of Loss Weights We test the effect of varying the weights of image
space objectives during post-training, defined as hyper-parameters Ajmage and
Alesion (Table . Increasing Ajmage improves overall image accuracy and struc-
tural consistency, but this effect diminishes as Ajmage is further increased. As we
increase Ajesion, lesion MAE decreases sharply before reaching a plateau. Further
increasing Ajesion results in overall distortion of synthesized images. We observe
that small weights for image space objectives is sufficient to achieve the best
balance between global image quality and lesion conspicuity.

Generalization to Other Latent Diffusion Models To showcase the broad
applicability of our framework, we apply it to cBBDM which learns stochas-
tic Brownian bridge process in the latent space. Post-training cBBDM by our
framework with A\jymage = 0.01 and Ajesion = 0.02 led to improvements across all
metrics, indicating better image quality and lesion delineation (Table [3)).

4 Conclusion

In this study, we present a novel post-training framework for LDMs in medical
images to improve image quality and lesion delineation, generating more realistic
and clinically accurate images. By integrating medical image space objectives,
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our method addresses the challenge of capturing high-frequency details in LDMs.
Evaluation on a diffusion MRI-CTP paired dataset of acute ischemic stroke pa-
tients demonstrates that our framework surpasses state-of-the-art models in both
overall image fidelity and ischemic lesion conspicuity. These results underscore
the effectiveness of our framework in enhancing diagnostic reliability and its po-
tential to support clinical decision-making. Moreover, its consistent performance
across various LDMs suggests its broad applicability to diverse medical image
translation tasks.
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