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Abstract. Active Learning (AL) is a promising solution in medical im-
age segmentation to reduce annotation costs by selecting the most infor-
mative training samples. However, traditional warm-start AL methods
rely on iterative querying and fail to address the cold-start dilemma.
While Cold-Start Active Learning (CSAL) attempts to resolve this, cur-
rent methods are limited to 2D images and neglect Self-Supervised Learn-
ing (SSL)’s potential for uncertainty estimation in AL. Moreover, while
hybrid uncertainty-diversity sampling has been discussed in warm-start
setting, the efficacy of this combined approach is not explored in CSAL.
In this paper, we present CSAL-3D: a novel Cold-Start Active Learning
framework for 3D medical image segmentation. Firstly, a CSAL-adapted
SSL pipeline for ensemble-based uncertainty estimation and 3D-oriented
feature extraction is proposed. Secondly, a novel Uncertainty-Reinforced
Diversity Sampling (URDS) strategy is introduced, which synthesizes
cluster representativeness and sample-level uncertainty in a hierarchical
process. It can select samples that are both uncertain and representa-
tive in one shot. Experiments on Brain Tumor, Heart and Spleen organ
segmentation tasks from CT or MRI 3D images show that CSAL-3D out-
performs other state-of-the-art CSAL counterparts with an avergae Dice
of 87.03%. The source code is available at https://github.com/HiLab-
git/CSAL-3D.

Keywords: Annotation Efficient Learning · 3D Image Analysis · Un-
certainty Estimation.

1 Introduction

Reducing the time and cost in data annotation posts great challenges for deploy-
ing large-scale deep learning models in 3D image analysis [20]. Active Learning
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(AL) is a promising solution by selecting the most informative samples for anno-
tation within a fixed labeling budget. Traditional Warm-Start Active Learning
(WSAL) requires iterative rounds of labeling and training, which limits its appli-
cation in low-shot scenario. WSAL also requires an initial set of labeled samples
to start the active selection [16,23,15,27]. Randomly selecting samples for this
initial model leads to sub-optimal performance. These issues have spurred inter-
est in Cold-Start Active Learning (CSAL) where the model has only one chance
to request annotations without any prior knowledge of the entire dataset.

Existing work on CSAL can be divided into: (1) Uncertainty Sampling
focuses on selecting samples where the model is least confident about its pre-
dictions [5,17,3,6]. These samples are expected to be difficult and can refine
the model’s predictions in ambiguous areas. Common methods include proxy-
tasks via Hounsfield Unit (HU) intensity window [16] or Otsu thresholding [14].
However, their accuracy suffers from proxy-task representation bias, e.g., over-
selecting tumor regions while missing normal yet complex anatomical structures.
(2) Diversity Sampling aims to cover the data distribution by selecting repre-
sentative samples [26,8,11]. Self-Supervised Learning (SSL) plays an important
role in training a feature extractor without labels [24,7,19]. Following SSL, clus-
tering is performed and samples are strategically selected from the cluster center
[26] or high-density areas [8]. However, once the general structure of the data is
well understood, this method is less effective than uncertainty sampling. Incor-
porating both diversity and uncertainty information to exploit complementary
advantages shows great potential but this hybrid approach is not investigated
for CSAL. Previous works [13,4] on hybrid sampling are limited to WSAL, which
only discussed the phase shift phenomenon with the change of querying round.

In addition, AL for segmentation tasks is of high significance due to the
difficulties of obtaining dense pixel or voxel-level image annotations. However,
existing CSAL for medical image segmentation is limited to 2D images with
sparse attention on 3D cases [12]. Although Liu et. al [14] offered valuable insight
by presenting a CSAL benchmark for 3D medical image segmentation. However,
their work primarily compared existing sample selection strategies that were
adapted from 2D versions or WSAL, instead of proposing a new systematic 3D
medical image segmentation-tailored CSAL framework. Moreover, these works
[12,14] decoupled the design of representation learning and sample selection.
Beyond feature extraction, SSL’s potential in uncertainty estimation for CSAL
is often overlooked.

To this end, we present CSAL-3D: a novel CSAL framework dedicated for
3D medical image segmentation based on SSL-driven Uncertainty-Reinforced
Diversity Sampling (URDS). Firstly, to explore SSL’s potential in simultaneous
3D-oriented feature extraction and uncertainty estimation, we design a CSAL-
adapted SSL framework for pre-training, which combines multi-view image in-
painting, rotation prediction and cross-view consistency as auxiliary tasks. Sec-
ondly, we propose an ensemble-based multi-view reconstruction method for re-
liable sample-level uncertainty estimation, bridging the gap of the decoupled
design of SSL and sample selection. Thirdly, to leverage the uncertainty infor-
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Fig. 1. The workflow of CSAL-3D, which comprises of CSAL-adapted SSL framework,
ensemble-based uncertainty estimation and uncertainty-reinforced diversity sampling.

mation, we introduce URDS to query the annotator, which combines diversity
and uncertainty sampling in the CSAL setting for the first time. It involves
typicality-gated diverse candidate sample selection and uncertainty-guided final
sample selection. In this way, CSAL-3D can select diverse samples to maximize
coverage of the data distribution while maintaining high sample uncertainty to
perform well in ambiguous regions. Experiments conducted on three datasets
across MRI and CT modalities show that the proposed CSAL-3D consistently
outperforms other CSAL counterparts and achieves superior segmentation result
under low budget scenarios comparable with full-supervision.

2 Method

Problem Statement and Method Overview. CSAL in segmentation aims
to select a subset of samples S of annotation budget M from an unlabeled dataset
X = {X1, X2, ..., XN} (M ≪ N) such that the model trained on S achieves the
optimal segmentation performance, with only one chance to request labels from
human experts. As shown in Fig.1, our CSAL-3D comprises of the following
steps: CSAL-adapted SSL, ensemble-based uncertainty estimation and URDS
to obtain both diverse and uncertain samples for querying the annotator.

CSAL-adapted SSL. We first propose a CSAL-adapted SSL framework. Dis-
tinct from 2D-focused SSL in previous works that neglects volumetric structure
[14,16], our design emphasizes on the intrinsic multi-view geometric transfor-
mations of 3D images and explores SSL’s potential in uncertainty estimation to
support sample selection. Specifically, we follow [22] to employ the image inpaint-
ing, rotation prediction and cross-view consistency tasks, but we adopt more
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rotations and views to enhance uncertainty estimation. The inpainting task sup-
ports ensemble-based uncertainty estimation while the rotation prediction and
cross-view consistency task aim to enhance 3D view-invariant feature extrac-
tion. Through CSAL-adapted SSL, our framework thus transforms SSL from a
mere feature extractor to an uncertainty-aware precursor that provides guidance
for URDS. Formally, let x ∈ RD×H×W denote a 3D sub-volume cropped from
image X. For each x, we generate Nv = 3 views (axial, coronal, sagittal) and
apply Nr = 3 rotations {θv,r}3v,r=1 for each view to get {xv,r}3v,r=1, where each
rotation angle is randomly sampled from (0, 90°, 180°, 270°). Each combination
is partially masked, yielding total 9 observations {xv,r

m }3v,r=1. A shared encoder
Φ processes all observations to extract latent features zv,rm = Φ(xv,r

m ). These
features are fed into two parallel heads: one Inpainting Decoder ΨD that re-
constructs masked regions as x̂v,r = ΨD(zv,rm ), and one Rotation Classifier ΨR

outputs the predicted probabilities of the rotation angle {yv,ri }4i=1 = ΨR(z
v,r
m ).

We construct the following SSL tasks. (i) Inpainting: For each view-rotation
pair (v, r), the decoder ΨD reconstructs the original image x from masked in-
put xv,r

m with loss function constructed as Eq. 1. (ii) Rotation Prediction:
For each view v, the classifier ΨR identifies the applied rotation angle θv,r. The
rotation loss is formulated in Eq. 2 (iii) Cross-view Consistency: To ensure
spatial coherence, all reconstructions {x̂v,r}3r=1 from different rotations of the
same view v must align in canonical coordinates after inverse rotation R−1

v and
thus construct the loss Eq. 3. We formulate the total loss function in Eq. 4 by
adding the three task-specific losses together.

Linp =
1

9

3∑
v=1

3∑
r=1

∥ΨD(zv,rm )− xv,r∥22 (1)

Lrot = −1

9

3∑
v=1

3∑
r=1

4∑
i=1

θv,r log yv,ri (2)

Lcons =
1

18

3∑
v=1

3∑
r ̸=r′

∥R−1
v (x̂v,r)−R−1

v (x̂v,r′)∥1 (3)

L = Linp + Lrot + Lcons (4)

Ensemble-based Uncertainty Estimation. To better explore SSL’s function
beyond feature extraction, especially its potential for AL-targeted uncertainty
estimation, we propose an ensemble-based method to derive the voxel-level un-
certainty and perform sample-level aggregation via slicing window to attain the
sample level uncertainty. For each voxel at position (i, j, k) in x ∈ RD×H×W , we
calculate the voxel level uncertainty based on multiple reconstructed outputs.
Specifically, we take the set of reconstructions {x̂v,r}3v,r=1 produced by the de-
coder ΨD, and then apply the inverse spatial transformation to align them in the
same space. The voxel-level uncertainty Uvox(i, j, k) is defined as the variance of
these reconstructed voxel values:
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Uvox(i, j, k) =
1

H ×W ×D

3∑
v=1

3∑
r=1

(x̂v,r(i, j, k)− µ(i, j, k))
2
, (5)

µ(i, j, k) =
1

9

3∑
v=1

3∑
r=1

x̂v,r(i, j, k) (6)

Next, we perform sample-level uncertainty aggregation using a sliding win-
dow approach. An overlapping sliding window is moved across the 3D volume.
The aggregated sample-level uncertainty Ũ(X)(u, v, w) is computed as follows:

Ũ(X)(u, v, w) =
1

nuvw

∑
(u,v,w)∈x

Uvox(iuvw, juvw, kuvw), (7)

where nuvw counts how many sub-volumes overlap with the voxel coordinate
(u, v, w), and (iuvw, juvw, kuvw) denotes the local positions within the sub-volume
x corresponding to the global coordinate (u, v, w). Finally, the overall uncertainty
score for the original sample X is calculated as in Eq. 8 where Ωvalid denotes
the set of voxels that are covered by at least one sub-volume. To summarize,
with ensemble-based uncertainty estimation, we seamlessly integrate feature ex-
traction in SSL with uncertainty estimation for AL in a deeply coupled manner,
rather than treating them as two separate modules as in previous approaches.

S(X) =
1

|Ωvalid|
∑

(u,v,w)∈Ωvalid

Ũ(X)(u, v, w) (8)

URDS for Sampling. We further introduce URDS to combine uncertainty
and diversity sampling, an area remaining unaddressed in CSAL. Given the
unlabeled dataset X = {X1, X2, . . . , XN}, the encoder Φ generates a feature
bank Z = {z1, z2, . . . , zN}. Let c : Z → {1, . . . ,M} denote the cluster assignment
function obtained from multi-kernel k-Means clustering, which partitions Z into
M clusters {Cm}Mm=1, where M is the annotation budget:

Cm = {zj ∈ Z | c(zj) = m} (9)

Next, we propose typicality-gated diverse candidate sample selection. In-
spired by [8], we define the typicality score T (zi) for each zi ∈ Cm using the
inverse average cosine similarity to enhance robustness to outliers:

T (zi) =
1

1
|Cm|−1

∑
zj∈Cm,j ̸=i (1−

z⊤
i zj

∥zi∥∥zj∥ )
, (10)

For each cluster Cm, we construct a candidate set C̃m by selecting samples
whose typicality scores rank in the first Ncand positions after descending sorting:

C̃m = {zi ∈ Cm | ∃k ≤ Ncand, T (zi) = T(k)(Cm)} (11)
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where T(k)(Cm) denotes the k-th largest typicality score in Cm. Finally, we
perform uncertainty-guided final sample selection to select the maximally uncer-
tain sample among candidates from each C̃m.

X∗
m = argmax

z∈C̃m,z=Φ(X)

S(X) (12)

By employing the URDS strategy, we can ensure that the resulting set S =
{X∗

1 , . . . , X
∗
M} captures the underlying distribution of the original data and also

enables the model to focus on challenging and ambiguous regions, achieving the
synergy of uncertainty and diversity in CSAL.

(1a) Whole Tumor (1b) Tumor Core (1c) Enhancing Tumor

(2) Heart

(3) Spleen

Fig. 2. The Dice score and HD95 of comparative study on CSAL methods with differ-
ent annotation budgets for (1) Brain Tumor (1a: Whole Tumor, 1b: Tumor Core, 1c:
Enhancing Tumor), (2) Heart and (3) Spleen dataset.
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3 Experiments

Experimental Details. To evaluate the performance of our CSAL-3D and
compare it with state-of-the-art methods, we selected three tasks from the Med-
ical Segmentation Decathlon (MSD) dataset [1]: 1-Brain Tumor (multi-modality
MRI), 2-Heart (MRI), and 9-Spleen (CT). Following [14], we divided the Brain
Tumor, Heart, and Spleen datasets into training/validation sets with ratios
387/97, 16/4, and 25/7. CT images were clipped to [-1024, 1024] HU and nor-
malized to [0, 1], while MRI images were z-score normalized, with intensities
clipped to the [1st, 99th] percentiles before rescaling. We used the Swin-UNETR
network [9] for SSL, configuring latent vectors to 256 dimensions through global
average pooling. During pre-training, the mask ratio was 0.3. Training patches
were randomly cropped to [128, 128, 128], and a sliding window with stride 64
was used. We used nnUNet [10] for segmentation after sample selection. All ex-
periments were implemented using PyTorch 2.3.1 [18] and MONAI 1.13.1 [2] on
four NVIDIA 1080Ti GPUs. Each run was conducted for 30,000 iterations with
a batch size of 4 and was repeated three times with different random seeds. The
mean value of Dice and HD95 metrics is recorded.

Heart

GT CLFPSRandom VAAL OursUSL USL-T

Brain

Tumor

Spleen

Fig. 3. The axial view segmentation visualization on the Brain Tumor, Heart and
Spleen dataset, where the annotation budget is 20, 4, 4 respectively.

Comparative Study with CSAL. We compared our method with state-of-
the-art CSAL approaches and all methods used their own SSL tasks: VAAL[3],
CLFPS [12], USL [21], USL-T [21], and random selection under four annotation
budgets. Given the limited samples in Heart and Spleen, budgets were set to 3, 4,
5, and full supervision. For Brain Tumor, we used budgets of 10, 20, 30, and full
supervision. As the Brain Tumor dataset involves multi-class segmentation, we
report results for Whole Tumor (WT), Enhancing Tumor (ET), and Tumor Core
(TC). Fig. 2 shows our method excels under low annotation budgets. In Heart
dataset, it achieves 92.34% Dice with just 5 labels, closely matching the fully
supervised baseline (92.67%) with 95% fewer annotations. For Brain Tumor, our
method attains near-supervised Dice scores (WT: 90.02% vs. 90.51%) using only
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30 labels. It outperforms other methods in all settings except for TC at 20 labels
and Heart at 3 labels, as further validated in the visualization result in Fig. 3.

Comparative Study on Query Methods. We further compared URDS with
other query strategies. All methods employed our SSL framework to ensure con-
sistent encoded features. We evaluated Random selection, ALPS [26], CALR
[11], TypiClust [8], FPS [12], and ProbCover [25]. The annotation budget was
set to 4 for Heart and Spleen and 20 for Brain Tumor, also for ablation and sen-
sitivity studies. Table 1 shows URDS attains the highest average Dice of 87.03%,
much more superior than the second best competitor (85.86% for TypiClust). For
Heart, it achieves the highest Dice (91.62% vs. 91.31% for TypiClust) and lowest
HD95 (2.98 vs. 3.19–3.41). In Spleen, URDS also reaches peak Dice (95.06%).
On Brain Tumor, URDS significantly improves TC-Dice (80.59% vs. ≤78.65%)
and ET-Dice (79.94% vs. ≤79.02%).

Table 1. Query comparative study, ablation study and sensitivity study results. For
query comparative study, the best is in bold, while the second-best is underlined.

Methods Heart Spleen Brain-WT Brain-TC Brain-ET Average
Dice% HD95 Dice% HD95 Dice% HD95 Dice% HD95 Dice% HD95 Dice% HD95

Random 90.82 3.35 93.47 2.39 86.22 13.24 76.87 11.49 77.23 10.07 84.92 8.11
ALPS 91.13 3.21 93.82 2.83 86.14 13.15 78.47 13.54 78.01 9.61 85.51 8.47
CALR 90.91 3.19 92.67 3.08 86.71 12.82 78.01 12.66 78.68 9.03 85.40 8.16

TypiClust 91.31 3.29 93.89 2.67 87.45 12.98 77.64 14.97 79.02 8.92 85.86 8.57
FPS 89.51 3.97 94.93 2.35 85.14 16.79 77.16 14.78 77.09 9.87 84.77 9.55

ProbCover 90.38 3.41 94.48 2.11 86.43 13.45 78.65 12.07 78.51 9.15 85.69 8.04
Ours 91.62 2.98 95.06 2.12 87.94 12.78 80.59 13.36 79.94 8.84 87.03 8.02

Ablation Study for Each Task in CSAL-adapted SSL
Linp 90.27 3.25 93.67 2.65 86.77 14.61 79.22 12.49 78.83 9.56 85.75 8.51

Linp + Lcons 90.43 3.16 93.42 2.76 87.30 13.15 79.45 13.88 79.02 9.21 85.92 8.43
Linp + Lrot 91.08 2.99 94.65 2.02 86.93 13.87 81.05 11.73 79.52 8.98 86.65 7.92
Ablation Study for URDS

Unc-only 88.63 4.87 91.31 3.63 85.41 19.75 76.49 14.97 76.01 9.97 83.57 10.64
Div-only 91.23 3.16 94.39 2.40 86.63 13.07 79.62 11.84 78.63 9.64 86.10 8.02

Sensitivity Study on the Candidate Numbers Ncand

Ncand=2 91.44 3.05 94.91 2.23 86.78 13.57 79.58 13.98 78.82 9.50 86.31 8.47
Ncand=3 91.62 2.98 95.06 2.12 87.32 12.99 80.26 12.49 79.34 9.04 86.72 7.92
Ncand=5 91.18 3.21 94.78 2.27 87.94 12.78 80.59 13.36 79.94 8.84 86.89 8.09

Ablation and Sensitivity Study. We performed ablation studies to investi-
gate the contributions of the CSAL-adapted SSL framework and URDS. These
experiments assessed the impact of each SSL task on model performance and iso-
lated the roles of uncertainty and diversity in the query strategy. To evaluate SSL
fully, we excluded the loss component in Eq. 4 to assess its effect on CSAL selec-
tion. Table 1 shows that removing any self-supervised task degrades segmenta-
tion performance. In another experiment, we tested two variants of our method:
(1) Unc-Only: selecting M samples with the highest uncertainty score, and (2)
Div-Only: selecting one sample from each cluster with the highest typicality to
form in total M samples. As shown in Table 1, Div-only methods outperformed
Unc-only methods, though slightly behind our combined approach. These results
further confirm the effectiveness of our SSL and URDS. We also analyzed the
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impact of varying Ncand on segmentation performance. As a hyper-parameter
balancing uncertainty and diversity, Ncand showed stable performance across
values (2/3/5), with Dice fluctuations ≤0.5% for Heart/Spleen. For high-budget
tasks like Brain Tumor (M = 20), Ncand = 5 maximized ET-Dice (79.94%) and
WT-Dice (87.94%), while Ncand = 3 optimized Spleen (95.06% Dice) by enhanc-
ing diversity. These findings suggest a proportional Ncand-M relationship, where
higher M benefits from larger Ncand. We leave the precise empirical correlation
for future work.

4 Conclusion

In this paper, we present a novel CSAL framework for 3D medical image segmen-
tation. Firstly, we propose a CSAL-adapted SSL framework that jointly learns
3D spatial-semantic features and supports uncertainty estimation through ge-
ometric ensembles, exploring the role of SSL beyond mere feature extraction.
Secondly, we propose a hierarchical query strategy URDS that incorporates un-
certainty information as extra guidance for diversity sampling, providing insight
for uncertainty-diversity combined methods in CSAL. Extensive experiments
have validated the efficacy of our methods. We believe our work would facilitate
further research on CSAL in 3D medical analysis in the future.
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