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Abstract. Tissue segmentation is essential for pathology image anal-
ysis. Conventional deep learning based segmentation methods require
large amounts of annotated data and are constrained by the predefined
classes, making them less flexible in adapting to diverse clinical require-
ments and user-specific queries. The language-guided referring segmenta-
tion (LGRS) model can help identify and segment specific objects based
on user-provided descriptions. However, the existing LGRS models lack
the capability to explicitly reject nonexistent targets, and struggle in
effectively segmenting multiple target regions. Based on the above con-
siderations, we propose LTSE, a language-guided tissue referring seg-
mentation assistant for pathology images, which inherits the powerful
multi-modal alignment capabilities of Multi-modal Large Language Mod-
els (MLLMs) to implement tissue segmentation according to the instruc-
tions. Specifically, we expand the original vocabulary with multiple [SEG]
tokens to support multiple mask references and a [REJ] token to reject
the empty targets. In addition, we enhance the adaptability and accuracy
in multi-target segmentation by developing an Adaptive Expert Mixture
(AEM) module that can dynamically select specialized expert decoders
based on the textual and visual characteristics of the input data. We
for the first time curate a vision-language pathology dataset BCSS-Ref
for the tissue referring segmentation task with matched images, masks
and textual information, and the experimental results demonstrate the
superiority of our method in comparison with the existing studies.
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1 Introduction

Tissue segmentation is a crucial task in pathology image analysis, serving as a
critical component in disease diagnosis, prognosis, and treatment planning [27].

Traditional deep learning based segmentation methods have made remarkable
progress, with convolutional neural networks (CNNs) [21] and transformer-based
models [3][2] demonstrating high accuracy in delineating tissue structures of



2 J. Tang et al.

pathology images. However, these methods typically require extensive manually
annotated data, which is costly and labor-intensive [24]. Furthermore, they are
constrained by a fixed set of predefined categories, which makes it difficult to
segment tissue regions based on user-specified descriptions, thereby limiting their
flexibility in adapting to complex and dynamic clinical scenarios [9].

To overcome these challenges, language-guided referring segmentation (LGRS)
has emerged as a promising alternative, allowing more adaptive and flexible
target identification through language instructions [8]. Previous LGRS studies
mainly focused on fusing images and language to segment objects [6][28]. For
instance, Li et al. [15] developed a new text-augmented medical image segmen-
tation model LViT on X-rays and CT images. Ouyang et al. [22] proposed a
language-guided scale-aware medical segmentor LSMS to segment various liver
lesions. In order to bridge the modality gap for better performance, most of the
existing studies employed cross-attention mechanisms or cross-modal alignment
techniques to effectively integrate visual and linguistic features [5][4][16]. Based
on the rapid development of Multi-modal Large Language Models (MLLMs)
that can efficiently align the vision and language modalities with extraordinary
performance, Lai et al. [13] presented a language-instructed segmentation assis-
tant LISA for referring and reasoning segmentation on natural images. Xia et al.
[26] introduced a vision segmentation assistant GSVA for further performance
improvement. Other studies include [19][30] presented a generalized decoding
framework that can predict pixel-level segmentation with language instructions.

Although much progress has been achieved, most existing LGRS methods
lack the ability to reject irrelevant or empty targets. As a matter of fact, differ-
ent tissues in the complex tumor micro-environment might appear quite alike in
terms of their overall structure and cellular arrangement. For instance, the en-
dothelial cells and tumor cells usually show similar appearance during the vessel
formation process [12]. Accordingly, there is a high possibility that the endothe-
lial cells may be mis-segmented as tumor cells if the target of tumor cells are not
rejected. In addition, the existing methods struggle with segmenting multiple
target regions effectively as they rely on a unified decoder, which limits their
ability to adapt to the diverse and complex language instructions.

Based on the above considerations, we propose LTSE, a novel language-
guided tissue referring segmentation assistant, which inherits the powerful multi-
modal alignment capabilities of MLLMs to generate precise segmentation masks
based on the language instructions. Specifically, we expand the original vocabu-
lary of the LLM with multiple [SEG] tokens to support multi-target identifica-
tion and a [REJ] token to explicitly reject empty targets. Instead of relying on a
unified mask decoder, we further propose an Adaptive Expert Mixture (AEM)
module to dynamically select specialized expert decoders that can enhance the
model’s adaptability to diverse and complex language instructions. We for the
first time curate a vision-language pathology dataset BCSS-Ref for tissue refer-
ring segmentation task with matched images, masks and textual information.
The experimental results demonstrate the superiority of our method in compar-
ison with the existing studies.
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What are healthy acini and ducts with no 
abnormalities, glandular secretions with the 
largest area, the largest glandular secretions 
with normal acinus around it, normal acinus or 
ducts on the far right, cluster of abnormal cells 
suggesting malignancy in this image? Please 
output segmentation masks.
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Fig. 1. Overview of LTSE, which consists of text branch and mask branch. In the text
branch, given an input image and its corresponding text instructions, the MLLM gen-
erates output tokens which are then decoded as text output. LTSE generates multiple
[SEG] tokens for multiple referred regions and a [REJ] token to reject empty targets. In
the mask branch, all [SEG] tokens are selected to prompt the mask decoding process.
The Adaptive Expert Mixture (AEM) module assigns weights to expert decoders via a
gate network and discards irrelevant experts, and then mixes their outputs to segment
the target objects referred to the instructions.

2 Method

The architecture of LTSE consists of two branches: text branch and mask branch.
We show the flowchart of our method in Fig. 1.

2.1 Text Branch: Generation of Text Responses

In the text branch, we combine the input text instructions and corresponding
images to generate the text responses. Specifically, given a text instruction xtxt

along with the input image ximg, we feed them into the Multi-modal Large
Language Model (MLLM) FMLLM to derive the output tokens ŷtxt:

ŷtxt = FMLLM(ximg,xtxt). (1)

Then, text responses are generated from ŷtxt using a linear classifier to predict
next words in the vocabulary. Notably, LTSE supports up to M [SEG] tokens
for multiple target regions and a [REJ] token to reject empty targets in ŷtxt.

2.2 Mask Branch: Segmentation with Adaptive Expert Decoders

The mask branch of LTSE focuses on generating segmentation masks for target
regions based on the [SEG] tokens and image features using an Adaptive Expert
Mixture (AEM), where each expert serves as a mask decoder. Specifically, we
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Fig. 2. Architecture of the gate network.

first encode the input image ximg by a vision encoder Fv to extract the image
features f img for segmentation:

f img = Fv(ximg). (2)

Then, we select the output embeddings of the [SEG] tokens as well as discarding
the [REJ] token from ŷtxt to derive ŷtxt[SEG], and project it into the prompt
space using an MLP projector ϕ with output hseg. Next, we pass hseg through
a prompt encoder Fp to obtain the prompt embedding fprom:

hseg = ϕ(ŷtxt[SEG]),fprom = Fp(hseg). (3)

Finally, instead of relying on a unified mask decoder for tissue segmentation
that is not adaptive to the complex text instructions, we design an Adaptive
Expert Mixture (AEM) module to dynamically select specialized expert decoders
for enhancing the segmentation adaptability and accuracy. Specifically, suppose
that we have n expert decoders {FE1, FE2, · · · , FEn} where the structure of each
individual decoder follows [11]. We denote the output of the decoders as m =
[m1,m2, · · · ,mn], where

mi = FEi(f img,fprom). (4)

The AEM assigns weights w = [w1,w2, · · · ,wn] to each expert decoder via a
gate network FG:

w = FG(f img,fprom). (5)

Fig. 2 presents the detailed architecture of the gate network FG. Specifically, we
first apply self-attention to fprom to capture the textual information. Then, two
layers of cross-attention are performed, using fprom as the query and f img as the
key and value to integrate both textual and visual features. After each attention
layer, addition and normalization operations are applied to stabilize the learning
process. The output is then processed using MLP and linear mapping, followed
by a softmax operation to compute the weights for each expert decoder. To
improve the model efficiency and focus on the most relevant experts, we retain
the top k experts based on their weights, setting the rest to zero. The final
weights w are then obtained through normalization. To obtain the segmentation
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masks ŷmask for target regions, we mix the outputs of expert decoders according
to their weights:

ŷmask =

n∑
i=1

wi ·mi. (6)

2.3 Training Objectives

Our model is trained by simultaneously optimizing the text generation loss Ltxt

and the segmentation mask loss Lmask. The overall objective L is formulated as:

L = Ltxt + Lmask, (7)

where Ltxt is the auto-regressive cross-entropy loss [20] for text generation, Lmask

is the combination of per-pixel binary cross-entropy (BCE) loss [14] and DICE
loss [29]:

Ltxt = CE(ŷtxt,ytxt),

Lmask = BCE(ŷmask,ymask) +DICE(ŷmask,ymask),
(8)

where ytxt and ymask represent ground-truth text responses and segmentation
masks, respectively.

3 Experiment

Implementation Details. We use LLaVA-7B-v1-1 [17] as the base Multi-
modal Large Language Model (MLLM) that is fine-tuned with LoRA [7]. In
addition, we adopt ViT-H SAM [11] backbone as the vision encoder Fv and the
prompt encoder Fp. The number of expert decoders n is set to 4, and k = 2
experts are retained in AEM. LTSE supports up to M = 10 [SEG] tokens,
enabling it to handle multiple referred regions. We adopt 4 NVIDIA 24G 4090
GPUs for training, and the training scripts are based on deepspeed engine [23].
We use AdamW optimizer and set the learning rate as 3e-4 without weight decay.
We use WarmupDecayLR as the learning rate scheduler, allocating 100 iterations
for warmup. Additionally, the batch size is set to 2 per device, with a gradient
accumulation step of 10. We train LTSE for 10 epochs, with 500 steps per epoch.

Dataset. We for the first time curate a vision-language pathology dataset
BCSS-Ref for tissue referring segmentation task with matched images, masks
and textual information. Our BCSS-Ref is based on the BCSS dataset [1], which
includes 151 whole-slide images (WSIs). We invite pathology experts to review
the BCSS semantic annotations firstly, and then provide detailed descriptions on
the important regions in each WSI. We randomly split the dataset into 5 folds,
with 4 folds (121 WSIs) used for training and the remaining (30 WSIs) used
for performance evaluation. The WSIs with detailed descriptions are divided
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Table 1. Comparison results of tissue referring segmentation on BCSS-Ref dataset. ‘-’
indicates that the method fails to reject empty targets, resulting in an N-Acc of 0.

Method 20x 40x Overall
gIoU cIoU N-Acc gIoU cIoU N-Acc gIoU cIoU N-Acc

Conventional LGRS Methods
LTS [10] 50.21 46.72 - 69.98 51.89 - 60.10 49.31 -
VLT [5] 49.78 46.89 - 70.51 52.02 - 60.15 49.46 -

CRIS [25] 51.43 48.01 - 71.18 53.70 - 61.31 50.86 -
LAVT [28] 53.72 50.07 - 73.65 55.13 - 63.69 52.60 -
ReLA [16] 61.63 54.17 91.82 79.09 61.02 89.58 70.36 57.60 90.70

X-Decoder [30] 53.91 52.15 - 74.01 57.21 - 63.96 54.68 -
LViT [15] 51.02 47.18 - 70.11 52.07 - 60.57 49.63 -

PloyFormer [18] 55.12 53.17 - 75.09 60.87 - 65.11 57.02 -
SEEM [31] 54.03 52.98 - 74.23 58.18 - 64.13 55.58 -
LSMS [22] 52.96 49.92 - 71.68 54.47 - 62.32 52.20 -

MLLM-based LGRS Methods
LISA [13] 54.40 55.66 - 74.98 61.50 - 64.69 58.58 -
GSVA [26] 63.71 54.28 94.84 80.89 61.53 95.93 72.30 57.91 95.39

LTSE (ours) 65.63 56.99 98.22 82.60 62.55 98.38 74.12 59.77 98.30

into patches at 20x magnification (8,357 patches) and 40x magnification (36,651
patches). Additionally, we extend the region annotations on the patches by in-
cluding their positions and area information. Our dataset link is listed below:
https://pan.baidu.com/s/15pnneQRXO6TTnJL1QHxjTQ?pwd=wudj.

Evaluation Metrics. We follow the study in [26] that adopts gIoU, cIoU to
evaluate the performance for referring segmentation. Specifically, gIoU computes
the average IoU for each mask, while cIoU calculates the cumulative intersection
area relative to the cumulative union area across the entire dataset. To evaluate
empty targets, we use the measurement of No-target Accuracy (N-Acc) [26],
which measures the ratio of correctly classified empty-target text expressions to
the total number of empty-target text expressions in the dataset.

Comparison with the State-of-the-Arts. We compare LTSE with the fol-
lowing 12 methods: LTS (CVPR21) [10], VLT (ICCV21) [5], CRIS (CVPR22)
[25], LAVT (CVPR22) [28], ReLA (CVPR23) [16], X-Decoder (CVPR23)
[30], LViT (TMI23) [15], PolyFormer (CVPR23) [18], SEEM (NIPS24) [31],
LSMS [22], LISA (CVPR24) [13], GSVA (CVPR24) [26]. Among these meth-
ods, only LViT [15] and LSMS [22] are specifically designed for referring segmen-
tation on medical images. Meanwhile, only ReLA [16] and GSVA [26] has the
ability to reject empty targets. In Table 1, we show the referring segmentation
results of our method and its competitors on the BCSS-Ref dataset for tissue
segmentation at both 20x and 40x magnification levels. It is obvious that LTSE
achieves the best segmentation results in comparison with all its competitors.
Specifically, LTSE, GSVA [26] and LISA [13] are based on the MLLM that can
more effectively align image and text data than the traditional LGRS methods



Title Suppressed Due to Excessive Length 7

Table 2. Ablation study of tissue referring segmentation on BCSS-Ref dataset. ‘-’
indicates that the variant fails to reject empty targets, resulting in an N-Acc of 0.
‘M-[SEG] Tokens’ indicates Multiple [SEG] Tokens.

M-[SEG]
Tokens

[REJ]
Token

20x 40x Overall
gIoU cIoU N-Acc gIoU cIoU N-Acc gIoU cIoU N-Acc

✓ ✗ 59.13 55.03 - 78.87 61.28 - 69.00 58.16 -
✗ ✓ 50.43 49.69 29.65 69.13 57.54 32.04 59.78 53.62 30.85
✗ ✗ 54.41 54.96 - 74.92 60.75 - 64.67 57.86 -
LTSE 65.63 56.99 98.22 82.60 62.55 98.38 74.12 59.77 98.30

w/o AEM 63.19 54.70 98.05 79.96 60.60 98.19 71.58 57.65 98.12
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Fig. 3. Comparison Results of different AEM settings.

[10][5][25][28][16][30][15][18][31][22]. In addition, in contrast to LISA [13], LTSE
and GSVA [26] show their advantages for multi-target segmentation by utilizing
multiple [SEG] tokens. Moreover, our LTSE also achieves higher segmentation
accuracy than GSVA [26] since it employs an Adaptive Expert Mixture (AEM)
module for mask decoding that can dynamically select specialized decoders. In
other words, AEM provides more flexibility and adaptability to diverse instruc-
tions and thus can lead to an improvement of 2% on the indexes of gIoU and cIoU
over GSVA [26]. Finally, LTSE still outperforms ReLA [16] and GSVA [26] in
rejecting empty targets, demonstrating its effectiveness in handling empty-target
scenarios.

Ablation Study. To further evaluate the effectiveness of LTSE, we compare
it with its variants in Table 2. First, we investigate the impact of using multi-
ple [SEG] tokens and the [REJ] token. Here, the variant without applying the
multiple [SEG] tokens means that only one [SEG] token is employed for tissue
referring segmentation. As shown in Table 2, on one hand, the absence of the
[REJ] token will lead to the failure of rejecting empty targets. On the other hand,
solely relying on single [SEG] token will lead to a 15% drop in gIoU (shown in
the 2nd row) as it struggles to segment multiple target regions. Moreover, LTSE
also outperforms its variant without the AEM module (shown in the last row),
highlighting its advantage in enhancing segmentation performance by selectively
activating relevant expert decoders.
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Fig. 4. Comparison of visualization results among different methods.

Discussion of AEM. In Fig. 3, we discuss the impact of different AEM settings,
where k-n denotes the use of n expert decoders with k decoders are activated. As
shown in Fig. 3, the segmentation accuracy will be significantly improved when
the expert decoder number (n) increases from 1 to 4, but will drop when n reaches
to 5. The reason lies in the fact that adding more experts will strengthen the
model’s ability to handle diverse instructions. However, the involvement of too
many experts will introduce unnecessary complexity and may bring noise without
improving the segmentation results. Furthermore, it is also easy to observe that
the suitable number of activated experts (k) can lead to higher segmentation
results than simply choosing the best decoder (k = 1) or considering all decoders
(k=n), which validates the advantage of taking both diversity and individual
capability of expert decoders into consideration for referring segmentation.

Visualization Results. Fig. 4 presents the visualization results for different
methods. On one hand, as a representative LGRS method, LISA [13] struggles
with multi-target segmentation and empty-target rejection, while our LTSE ef-
fectively handles these cases. On the other hand, LTSE also outperforms the
current SoTA method GSVA [26] for tissue segmentation since it can provide
more consistent segmentation results.

4 Conclusion

Tissue referring segmentation plays a vital role in clinical pathology, enabling
precise identification and delineation of regions of interest in pathology images
based on textual descriptions. In this paper, we for the first time curate a vision-
language pathology dataset BCSS-Ref with matched images, masks and textual
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information, and propose a novel language-guided tissue referring segmentation
assistant LTSE for multi-target segmentation as well as rejecting empty targets.
Our LTSE also involves an Adaptive Expert Mixture (AEM) module that can
dynamically select relevant expert decoders to improve segmentation accuracy.
Experimental results on the BCSS-Ref dataset verify the potential of our LTSE
for referring segmenting on complex tumor micro-environment components.
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