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Abstract. Velocity field estimation, or motion tracking, is the key to
characterizing tissue function in ultrasound imaging. Current velocity
field estimation remains challenging in cross-range motion tracking due
to the less sensitivity of ultrasound in this dimension. In addition, there
is a lack of a uniform framework for different imaging schemes, such as
linear array with rectangular scanning, phased array with sector scan-
ning, and matrix array with volumetric scanning. This paper proposes
a uniform multi-mode fused framework for tissue velocity field estima-
tion. This framework integrates multiple modes of pair-wise optical flows,
Doppler, and speckle consistency in ultrasound to improve the accuracy
of cross-range velocity estimation. Furthermore, the uniform framework
is adapted to different arrays and imaging schemes for various applica-
tion scenarios. Extensive in-silico experiments on homemade and public
datasets demonstrate the effectiveness of the proposed framework and
the outperformance of our method when compared with a window-based
method and an energy function optimization-based method. Particularly,
our method improves the accuracy of cross-range velocity estimation by
8.84%, 19.21%, and 10.94% in three cross-sectional views of the public
cardiac dataset when compared with the energy function optimization-
based method.
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1 Introduction

Ultrasound imaging has emerged as a fundamental and powerful clinical diag-
nostic tool that provides anatomical and functional images of tissues and organs.
Anatomical images are commonly presented in B-mode, whereas the functional
information is provided in multiple ways. For example, elastography can char-
acterize tissue pathologies by estimating their mechanical properties to classify
dysfunctional regions [19]. A key step of functional characterization in ultrasound
is velocity field estimation, or motion tracking, as different tissues or abnormal
components exhibit distinct viscoelastic properties [2]. Velocity field estimation
is typically achieved by processing pre and post-motion frames by leveraging the
unique data characteristics of ultrasound images. Current methods are broadly
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categorized into window-based, energy function optimization-based, and deep
learning-based approaches.

Window-based methods, such as normalized cross-correlation (NCC) and
zero-phase techniques, focus on local displacements by matching post-motion
patches to a referenced frame [14, 12]. These methods are particularly effective
for in-range motion tracking. However, they struggle with cross-range motion
estimation due to the poorer spatial resolution in this dimension, where the
point spread function (PSF) is wider compared to that in the in-range dimen-
sion. Additionally, window-based methods face challenges in estimating large
motions due to speckle decorrelation [2]. On the other hand, energy function
optimization-based methods formulate velocity field estimation as a global op-
timization problem including physical constraints and regularization such as
Doppler and ultrasonic optical flow [20,15,16,4,13]. These methods are more
robust to speckle decorrelation and noise but tend to smooth and underestimate
velocity fields due to regularization. Deep learning-based methods have recently
emerged as a promising alternative, offering the ability to adapt to the complex-
ity of ultrasound imaging scenarios through deep neural networks [7, 10, 18,9,
21]. However, supervised deep learning approaches heavily rely on the quality of
training data and labels, which are often unavailable in in-vivo datasets |8, 23].
To address this, semi-supervised or unsupervised methods have been proposed
to facilitate advancements in ultrasound motion tracking [6, 5, 22].

Current ultrasound velocity field estimation remains challenging raised by
the following issues: (1) Inaccurate estimation of cross-range velocity compo-
nents due to a lower motion sensitivity in this dimension. (2) Out-of-plane mo-
tion in the two-dimensional (2D) imaging. (3) The lack of a uniform framework
for velocity field estimation across different imaging schemes, such as linear,
phased, convex, and matrix arrays. This paper proposes a uniform multi-mode
fusion framework applicable to various ultrasound imaging schemes, with en-
hanced cross-range velocity accuracy. These multi-mode constraints, combined
with rational regularization, are integrated into a flexible framework that can
be adapted to various schemes, preserving ultrasound data characteristics and
eliminating the need for scan conversion, especially in time-consuming volumet-
ric imaging. The main technical contributions are as follows: (1) The introduc-
tion of multi-mode fused constraints, including tissue Doppler, pair-wise optical
flows, and speckle consistency, to estimate tissue velocity fields. (2) The devel-
opment of a uniform framework that integrates these constraints and adapts to
different imaging schemes. (3) The demonstration of the framework’s effective-
ness through extensive in-silico validations, showcasing its ability to estimate
velocity fields without losing intrinsic ultrasound characteristics.

2 Methods

2.1 Modified Doppler Estimation

The sequential ultrasound beam emissions with an order of [1,...,N,1,..., N]
(N is the number of angles) cause the PSF to rotate in one direction and bias
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Fig.1. (a) is the uniform framework for velocity field estimation. The framework is
adapted to (b) linear array imaging with rectangular scanning, (c¢) phased and convex
array with sector scanning, and (d) matrix array with volumetric scanning.

Doppler estimation [17]. To address this, a round-trip emission with an order
of [1,...,N,N,....1,1,..] [3,4] is adopted. Therefore, the Doppler velocity vgy, is
given by [17]:

Jorgoc 1
47 - fo 2
where fy,,y = 5 kHz is the pulse repetition frequency, fy is the center frequency,
and ¢ = 1540 m/s is the speed of sound in tissue. Z(r¢4-75q) computes the angle of
the complex-valued coefficient where the product cancels out the pseudo-velocity
caused by PSF rotation. The factor of 1/2 is necessary to scale the phase from
T4 - Tpqg. The minus sign ensures consistency with the imaging coordinate.

Vap = — L(T¢d - Thd), (1)

2.2 Uniform Framework

Fig. 1(a) presents the diagram of the uniform framework that contains the con-
straints of Doppler, pair-wise optical flow, brightness compensation (BnCo), 1D
in-range motion compensation (MoCo), and regularization.
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Doppler Constraint. The Doppler field vq4, obtained in Eq. 1 is the projection
of the unknown velocity field v onto the in-range dimension ng,, where ng, is
the unit vector of Doppler direction. Therefore, the Doppler constraint minimizes
the following error term [16, 4]:

Eqp = wo /Q ((ndp ,V) — vdp)2d.(2, (2)

where wy is the weight of the constraint. {2 is the region-of-interest (ROI).
Brightness Compensation (BnCo). Multi-angle plane or diverging wave
transmissions result in non-uniform sound fields, showing stronger fields along
the beam’s main axis and weaker fields elsewhere. This variation violates the
brightness constancy assumption of optical flow, especially for fast-moving tar-
gets. BnCo is proposed to compensate for non-uniform sound fields in the round-
trip scan sequence. Since measuring the true sound fields is non-trivial, we simu-
late them using Field II [11] and equalize the images to quasi-constant brightness.
1D In-Range MoCo. The directions of optical flow velocities depend on the
spatial gradients of images, which may collide with the in-range Doppler veloc-
ities. To mitigate such collision and make the pair-wise optical flow constraints
more focused on cross-range estimation, 1D in-range MoCo is performed on the
images after BnCo:

Imoco(r) = Imoco(r + Ar)e_j47TArf0/c (3>

where r denotes the in-range dimension and Ar is the displacement. Here the
symbols of the cross-range dimension are omitted for a clearer interpretation.
Pair-Wise Optical Flow Constraints. The images after BnCo and 1D MoCo
primarily exhibit cross-range motions. In a round-trip sequence, the two images
from the same angle have similar beam characteristics. As a result, the N pairs
of images generate N pair-wise optical flow fields at different time scales:

S0 (I(2N+1—i) _ I(i)) Sors -
of (2N —2i+ 1) || VIO ||’ ’

SN (4)

where || VI®) || computes the normalized spatial gradients of images. The con-
straints minimizes the following error term:

. N2
E((ff) = w; /Q ((nof (V= vap)) — vglf)) ds, (5)
where w; is the weight of the i-th pair constraint. n,¢ = % is the unit vector

indicating the direction of v,y determined by the spatial gradients.
Regularization. In the framework, we use a second-order smoothness regular-
ization to ensure the smoothness of the velocity field estimates. The regulariza-
tion term Fg,,; is formulated according to the characteristics of the following
imaging schemes and coordinates.

Finally, the uniform multi-mode fused framework is formulated as a global

optimization baseline: v = arg min (Edp + Zf\; Eng) + Esmh).
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2.3 Adaptation

Linear Array with Rectangular Scanning. Fig. 1(b) shows that linear array
imaging reconstructs images in the Cartesian coordinate. The velocity field is
denoted as v = [v,,v,], where & and z represent the cross-range and in-range
dimensions, respectively. The Doppler constraint is the same to Eq. 2 with ng, =
[0, 1]. The pair-wise optical flow constraint and smoothness are:

(4) (4) 2
(4) L v, + LY (v, — vap) (i)
EY = w, . - de, 6
g=wif, ( VI | vo ©)
Bamh =AY / (020)% + 202, 0m)? + (0%v,0)2d02. (7)
2

mée{x,z}

Note that Eqgs. 2, 6, and 7 also work for other imaging schemes if their images
are scan-converted to the 2D /3D Cartesian coordinates.
Phased Array with Sector Scanning. Fig. 1(c) shows phased array imaging
in the polar coordinate. The velocity field is denoted as v = [v, vg], where r and
0 denote the in-range and cross-range dimensions, respectively. The constraints
and regularization are amended to:

Eqp = wo/ (rdyv, + dovg — rvdp)2d.Q, (8)
I?)
@ / L e —vg) + 100 zd() (9)
= wi N - TUO 9
of Q | VIO || !

Fon =2 3 / ((r2070)? + 20082 gv)? + (D)) 2. (10)
me{r,0} 2
Matrix Array with Volumetric Scanning. The velocity fields of matrix
array imaging in a 3D spherical coordinate are denoted as v = [v,, vy, vg], Where
r is the in-range dimension and [0, ¢] represent the 2D cross-range dimensions
(Fig. 1(d)). The corresponding terms are amended as follows:

Eqp = wO/ (rdyv, + rdgvg + rdgvg — rvdp)de, (11)
(%}

) sin QI(i)U + I(i)v + rsin 91@ Vp — ), ) 2

9 / o0 o ¢ - (or ) —7rsin QUC(,}) g, (12)
o | VIO |

Eonp =\ Z / (27“ sin? 00,v,, + r? sin’ 002v,,, + sin 0 cos 00pvy,

mée{r,0,¢} £ (13)

o+ sin? 005 v + Oy ) d2.
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Fig. 2. llustration of the cross-sections in STRAUS.

Table 1. Configurations and parameters of different imaging schemes

Probe Type fo No. No. |Imaging grid (X is the wavelength)
[MHz] | elements | angles

Linear | L11-4v | 6.25 128 9 393 x 393 (pixel size: (A/2)7)

Phased | P4-2v 2.75 64 9 192 lines between +(45°), dr = \/2

Matrix - 3 32 x 32| 3 x3 | 192 x 192 lines between £(30°)

3 Experiments and Results

3.1 Imaging Sequence, Dataset, and Comparison

Table 1 lists the configurations of the imaging schemes in Field II [11]. In ad-
dition, for linear array imaging, the probe pitch is 0.3 mm. The maximal steer-
ing angle of plane waves is +10°. For phased array imaging, the probe pitch
is 0.3 mm. The maximal steering angle of diverging waves is £16°. For the
matrix imaging, the probe pitch is 0.3 mm X 0.3 mm. The experiments were
conducted on two numerical phantoms. The first is a spinning disk with four
anechoic cylinders, mimicking a heart with four chambers [17,4]. The radii of
the disk and inclusion are 50 mm and 15 mm, respectively. The disk was rotating
clockwise at maximal outer linear velocities of [10, 15, 20] cm/s for linear array
imaging and [10, 15, 20, 25, 30] cm/s for phased array imaging. Scatterers were
randomly distributed in the imaging field according to a density of 10 per reso-
lution cell. The second dataset is the public 3D strain assessment in ultrasound
(STRAUS) generated from in-vivo cardiac images obtained with high-precision
electro/mechanical models [1]. Fig. 2 illustrates two long-axis (LAX) and one
short-axis (SAX) cross-sections of STRAUS. For all the datasets, delay-and-sum
(DAS) beamforming with dynamic receive focusing were applied to obtain the
images.

We compared our method with NCC [14] and VVI [16] to evaluate its perfor-
mance. NCC and VVI were chosen because they are representative of window-
based and optimization-based methods, respectively. Moreover, both methods
can be extended to linear and phased imaging, which aligns with the main goal
of providing a unified framework for different imaging schemes. The normalized
root mean square error (nRMSE) and the coefficient of determination R? (see
Eq. 13 and Eq. 14 in [24]) are used to evaluate the estimated velocity fields.
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Fig. 3. Velocity fields of the spinning disk at a maximal linear velocity of 20 cm/s in
the linear array imaging. (a)-(d) are the axial (in-range) velocity fields of ground truth,
NCC, VVI, and our method. (e)-(h) are the lateral (cross-range) velocity fields.

Table 2. nRMSE and R? of the velocity fields in the phased array imaging.

Field of view \ LAX #1 \ LAX #2 \ SAX

Method | NCC VVI  Ours | NCC VVI  Owss | NCC VVI  Ours
nRMSE(in,%) | | 10.21 6.81 4.79 | 20.65 10.99 8.10 | 25.35 17.98 12.92
nRMSE(cross,%) 1| 24.46 18.59 9.75 33.46 31.81 12.6 36.37 25.20 14.26
R2(in) 4 0.77 094 0.97 | 0.68 0.83 0.90 | 0.21  0.59 0.68
R? (cross) 1 0.33 056 0.75 | 031 0.67 0.74 | 0.14 046 0.57

Ground-truth NCC VI Ours _ “M/s Ground-truth cm/s

3 H
[ 3 Y h 2
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Fig. 4. Velocity fields in the X and Z dimensions of the STRAUS dataset in LAX
#1, LAX #2, and SAX views in the phased array imaging. The X and Z velocity
components are transformed from the in-range and cross-range estimates.

3.2 Results

Fig. 3 shows the in-range and cross-range velocity fields of the spinning disk
at 20 cm/s in the linear array imaging. Our method achieves the most similar
estimates to the ground truths. In comparison, VVI introduces more variance
to the estimates, whereas NCC makes wrong axial estimates in the region with
high axial velocities and underestimates the peak lateral velocities.

Table 2 summarizes the quantitative results on STRAUS in phased array
imaging. Our method improves nRMSE by 8.84% in LAX #1, 19.21% in LAX
#2, and 10.94% in SAX over VVI. Fig. 4 shows the velocity fields in LAX
#1, LAX #2, and SAX obtained by the tested methods. VVI and our method
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Fig. 5. Volumetric rendering of the 3D velocity fields in the central X-Z cross-section:
(a) is B-mode image. (b) and (c) are velocities in the Z and X dimensions at 15 cm/s;
(d) and (e) show the results at 20 cm/s.
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Fig. 6. Ablation study in phased array imaging. (a) and (b) are the nRMSE of the
Z-direction and X-direction velocity fields on the spinning disk. (c) and (d) are the
nRMSE of Z-direction and X-direction velocity fields on STRAUS.

provide similar results in LAX #1 and Z-direction velocities of SAX. However,
our method performs better in LAX #2 and X-direction velocities of SAX. In
comparison, NCC introduces artifacts in the Z-direction.

Fig. 5 shows the Z and X-velocity components derived from the in-range and
cross-range velocity fields in the matrix array imaging. The nRMSE and R? of
the Z velocity components are much better than those of the X components due
to the smaller aperture size of the matrix array (9.3 mm), resulting in a much
lower sensitivity of volumetric imaging to motions in the X-direction.

3.3 Ablation Study

The ablation study was conducted in phased array imaging. Four configurations
were tested: baseline, baseline + BnCo, baseline + MoCo, and baseline + BnCo
+ MoCo. Fig. 6(a)-(b) shows the nRMSE results on the spinning disk, showing
that BnCo, 1D MoCo, and their combination can improve velocity field estima-
tion. Fig. 6(c)-(d) presents the nRMSE results on STRAUS. 1D in-range MoCo
and BnCo both contribute positively to the in-range and cross-range velocity
estimation in LAX #1 and LAX #2. However, BnCo negatively impacts the in-
range estimation in SAX. This may be because BnCo also amplifies noise during
sound field equalization, thus deteriorating the low-velocity estimations in SAX.
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4 Conclusion

This paper proposes a uniform multi-mode (Doppler and pair-wise optical flow)
fused framework for tissue velocity field estimation in ultrasound. This model is
also adapted to multiple ultrasound imaging schemes. The in-silico experimental
results demonstrated the performance of the proposed method. The ablation
study further demonstrated the effectiveness of the proposed BnCo and 1D in-
range MoCo. Improving the accuracy of the cross-range velocity fields in matrix
array imaging and in-vivo validations are the future directions of this work.

Acknowledgments. This work was supported by the Natural Science Foun-
dation of Xiamen, China (No. 3502Z202473004), the Wang Deyao Outstanding
Graduate Scholarship Program of Xiamen University, the Fujian Provincial Nat-
ural Science Foundation of China (No. 2024J01003), the National Natural Sci-
ence Foundation of China (No. 62471416), and the Fundamental Research Funds
for the Central Universities (No. 20720240075).

Disclosure of Interests. The authors have no competing interests to declare
that are relevant to the content of this article.

References

1. Alessandrini, M., De Craene, M., Bernard, O., Giffard-Roisin, S., Allain, P.,
Waechter-Stehle, 1., Weese, J., Saloux, E., Delingette, H., Sermesant, M., D’hooge,
J.: A pipeline for the generation of realistic 3d synthetic echocardiographic se-
quences: Methodology and open-access database. IEEE Transactions on Medical
Imaging 34(7), 1436-1451 (2015)

2. Ashikuzzaman, M., Héroux, A., Tang, A., Cloutier, G., Rivaz, H.: Displacement
tracking techniques in ultrasound elastography: From cross correlation to deep
learning. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control
71(7), 842-871 (2024)

3. Chen, Y., D’hooge, J., Luo, J.: Doppler-based motion compensation strategies for
3-d diverging wave compounding and multiplane-transmit beamforming: A sim-
ulation study. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency
Control 65(9), 1631-1642 (2018)

4. Chen, Y., Zhuang, Z., Luo, J., Luo, X.: Doppler and pair-wise optical flow con-
strained 3d motion compensation for 3d ultrasound imaging. IEEE Transactions
on Image Processing 32, 4501-4516 (2023)

5. Delaunay, R., Hu, Y., Vercauteren, T.: An unsupervised approach to ultrasound
elastography with end-to-end strain regularisation. In: Medical Image Comput-
ing and Computer Assisted Intervention — MICCAIT 2020. pp. 573-582. Springer
International Publishing, Cham (2020)

6. Delaunay, R., Hu, Y., Vercauteren, T.: An unsupervised learning approach to ultra-
sound strain elastography with spatio-temporal consistency. Physics in Medicine
& Biology 66(17), 175031 (sep 2021)



10

7.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

H. Li et al.

Dosovitskiy, A., Fischer, P., Ilg, E., Hausser, P., Hazirbas, C., Golkov, V., Smagt,

P.v.d., Cremers, D., Brox, T.: Flownet: Learning optical flow with convolutional

networks. In: 2015 IEEE International Conference on Computer Vision (ICCV).

pp. 27582766 (2015)

. Evain, E., Faraz, K., Grenier, T., Garcia, D., De Craene, M., Bernard, O.: A pilot
study on convolutional neural networks for motion estimation from ultrasound
images. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control
67(12), 2565-2573 (2020)

. Hui, T.W., Tang, X., Loy, C.C.: Liteflownet: A lightweight convolutional neural

network for optical flow estimation. In: 2018 IEEE/CVF Conference on Computer

Vision and Pattern Recognition. pp. 8981-8989 (2018)

Ilg, E., Mayer, N., Saikia, T., Keuper, M., Dosovitskiy, A., Brox, T.: Flownet 2.0:

Evolution of optical flow estimation with deep networks. In: 2017 IEEE Conference

on Computer Vision and Pattern Recognition (CVPR). pp. 1647-1655 (2017)

Jensen, J., Svendsen, N.: Calculation of pressure fields from arbitrarily shaped,

apodized, and excited ultrasound transducers. IEEE Transactions on Ultrasonics,

Ferroelectrics, and Frequency Control 39(2), 262-267 (1992)

Kibria, M.G., Hasan, M.K.: A class of kernel based real-time elastography algo-

rithms. Ultrasonics 61, 88-102 (2015)

Li, H., Porée, J., Chayer, B., Cardinal, M.H.R., Cloutier, G.: Parameterized strain

estimation for vascular ultrasound elastography with sparse representation. IEEE

Transactions on Medical Imaging 39(12), 3788-3800 (2020)

Luo, J., Konofagou, E.E.: A fast normalized cross-correlation calculation method

for motion estimation. IEEE Transactions on Ultrasonics, Ferroelectrics, and Fre-

quency Control 57(6), 1347-1357 (2010)

Porras, A.R., Alessandrini, M., De Craene, M., Duchateau, N., Sitges, M., Bijnens,

B.H., Delingette, H., Sermesant, M., D’hooge, J., Frangi, A.F., Piella, G.: Improved

myocardial motion estimation combining tissue doppler and b-mode echocardio-

graphic images. IEEE Transactions on Medical Imaging 33(11), 2098-2106 (2014)

Porée, J., Baudet, M., Tournoux, F., Cloutier, G., Garcia, D.: A dual tissue-doppler

optical-flow method for speckle tracking echocardiography at high frame rate. IEEE

Transactions on Medical Imaging 37(9), 2022-2032 (2018)

Porée, J., Posada, D., Hodzic, A., Tournoux, F., Cloutier, G., Garcia, D.: High-

frame-rate echocardiography using coherent compounding with doppler-based

motion-compensation. IEEE Transactions on Medical Imaging 35(7), 1647-1657

(2016)

Ranjan, A., Black, M.J.: Optical flow estimation using a spatial pyramid network.

In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

pp. 2720-2729 (2017)

Sigrist, R.M., Liau, J., Kaffas, A.E., Chammas, M.C., Willmann, J.K.: Ultrasound

elastography: Review of techniques and clinical applications. Theranostics 7, 1303—

1329 (2017)

Suhling, M., Arigovindan, M., Jansen, C., Hunziker, P., Unser, M.: Myocardial

motion analysis from b-mode echocardiograms. IEEE Transactions on Image Pro-

cessing 14(4), 525-536 (2005)

Sun, D., Yang, X., Liu, M.Y., Kautz, J.: Pwc-net: Cnns for optical flow using

pyramid, warping, and cost volume. In: 2018 IEEE/CVF Conference on Computer

Vision and Pattern Recognition. pp. 8934-8943 (2018)

Wei, X., Wang, Y., Ge, L., Peng, B., He, Q., Wang, R., Huang, L., Xu, Y., Luo, J.:

Unsupervised convolutional neural network for motion estimation in ultrasound



23.

24.

Title Suppressed Due to Excessive Length 11

elastography. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency
Control 69(7), 2236-2247 (2022)

Wu, S., Gao, Z., Liu, Z., Luo, J., Zhang, H., Li, S.: Direct reconstruction of ultra-
sound elastography using an end-to-end deep neural network. In: Medical Image
Computing and Computer Assisted Intervention — MICCAI 2018. pp. 374-382.
Springer International Publishing, Cham (2018)

Yang, X., Yan, J., Chen, Z., Ding, H., Liu, H.: A proportional pattern recognition
control scheme for wearable a-mode ultrasound sensing. IEEE Transactions on
Industrial Electronics 67(1), 800-808 (2020)



