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Abstract. Despite the success of deep learning in automatic medical
image segmentation, it heavily relies on manual annotations for train-
ing that are time-consuming to obtain. Unsupervised segmentation ap-
proaches have shown potential in eliminating manual annotations, while
they often struggle to capture distinctive features for low-contrast and
inhomogeneous regions, limiting their performance. To address this, we
propose UM-SAM, a novel unsupervised medical image segmentation
framework that harnesses Segment Anything Model (SAM)’s capabilities
for pseudo-label generation and segmentation network training. Specif-
ically, class-agnostic pseudo-labels are generated via SAM’s everything
mode, followed by a shape prior-based filtering strategy to select valid
pseudo-labels. Given SAM’s lack of class information, a shape-agnostic
clustering technique based on ROI pooling is proposed to identify target-
relevant pseudo-labels based on their proximity. To reduce the impact of
noise in pseudo-labels, a triple Knowledge Distillation (KD) strategy is
proposed to transfer knowledge from SAM to a lightweight task-specific
segmentation model, including pseudo-label KD, class-level feature KD,
and class-level contrastive KD. Extensive experiments on fetal brain and
prostate segmentation tasks demonstrate that UM-SAM significantly
outperforms existing unsupervised and prompt-based methods, achieving
state-of-the-art performance without requiring manual annotations.

Keywords: Segment Anything Model · ROI feature clustering · Con-
trastive learning · Knowledge distillation · Unsupervised segmentation.

1 Introduction

Automatic anatomical structure segmentation from medical images is essential
for effective diagnosis and treatment planning [32]. While deep learning tech-
niques have made significant advances in this area [10,12], they typically rely on
large-scale annotated datasets for training [20]. However, obtaining accurate an-
notations for medical images is both time-consuming and labor-intensive, often
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requiring specialized expertise [30]. To address this, unsupervised learning [19,22]
has gained much attention for eliminating manual annotations.

Traditional unsupervised segmentation methods, such as DeepCluster [3] and
level set [13], group pixels based on feature similarity or low-level edge informa-
tion. Despite the efficiency, these methods struggle with medical images that
often have low contrast and inhomogeneous target regions. To improve the per-
formance, graph neural networks have been combined with clustering for this
task [1], but are computationally intensive and noise-sensitive. Recently, self-
supervised learning techniques [6,14,36] have been explored to extract low- and
high-level semantic features through pretext tasks, such as image reconstruc-
tion and contrastive learning. Additionally, generative models like Variational
Autoencoder (VAE) [25] and Generative Adversarial Network (GAN) [29] have
been developed to learn feature representation. However, they still face challenges
in capturing distinctive pixel-level feature representations for segmentation.

Recently, Segment Anything Model (SAM) [16], a prompt-driven foundation
model for natural image segmentation, has shown impressive zero-shot perfor-
mance and strong transferability across various downstream tasks [34,18]. Some
studies [2,17,23] tried to apply SAM to assist unsupervised medical image seg-
mentation. For example, SaLIP [2] uses SAM for part-based segmentation and
employs CLIP [26] to retrieve segments containing the target object. However, its
performance is limited by the significant domain gap between natural and medi-
cal images. Another approach, MedCLIP-SAM [17], combines BiomedCLIP [33]
and gScoreCAM [5] for target localization, generating bounding box prompts
for SAM to produce pixel-level pseudo-labels to train a segmentation network.
While it shows encouraging results in breast and brain tumor segmentation, it
primarily focuses on pseudo-label generation and underutilizes SAM’s robust
representation capability to boost the downstream segmentation model.

To address these limitations, we propose a novel framework, UM-SAM, for
unsupervised medical image segmentation. The main contributions are three-
fold: 1) We propose UM-SAM, a SAM-guided unsupervised medical image seg-
mentation method that leverages SAM for high-quality pseudo-label generation
at the logit level and robust segmentation model training via feature-level knowl-
edge distillation. 2) To derive target-specific pseudo-labels from SAM’s class-
agnostic raw output, we introduce a hybrid pseudo-label filtering method that
combines prior knowledge with feature clustering based on ROI pooling, effec-
tively rejecting irrelevant segments and ensuring high-quality pseudo-labels. 3)
We design a triple KD-based learning framework to train a downstream segmen-
tation model. It integrates pseudo-label KD, class-level feature KD, and class-
level contrastive KD to transfer SAM’s strong feature representation ability, sig-
nificantly improving the downstream model’s performance. UM-SAM achieved a
mean DSC of 90.15% and 80.44% for 2D fetal brain and prostate segmentation,
respectively, outperforming state-of-the-art unsupervised segmentation methods.
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Fig. 1. Overview of the proposed UM-SAM framework for unsupervised segmentation.
Lplkd, Lcfkd and Lcckd denotes the pseudo-label KD loss, class-level feature KD loss
and class-level contrastive KD loss, respectively.

2 Method

Fig. 1 illustrates an overview of the proposed UM-SAM. First, each input image
is processed through SAM’s everything mode to produce class-agnostic pseudo-
labels, which are subsequently filtered via shape priors to select valid pseudo-
labels. A feature clustering method based on ROI pooling is further used to
identify target-class pseudo-labels. To eliminate the impact of noise in pseudo-
labels, we propose a triple KD strategy to distill knowledge from SAM to a
lightweight task-specific model for robust feature representations.

2.1 SAM-based pseudo-label generation and filtering

Class-agnostic segments generation. Given the lack of manual annotation,
we leverage SAM in a fully automatic manner (everything mode) rather than a
semi-automatic manner (point or bounding box prompt) to segment an input
image into different class-agnostic segments. Let N denote the number of training
images, and Xn be the n-th training image. Grid-wise potential prompt locations
P ∈ Rm2

are sampled across Xn, where m denotes the number of points along
each side of the image. The raw pseudo-label (mask map) Mn generated by
SAM’s everything mode SAMEM is expressed as:

Mn = SAMEM (Xn, P ) = {M i
n}

Kn
i=1 ∈ {0, 1}H×W , (1)
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where M i
n is the ith class-agnostic segment (i.e., ROI) generated from image Xn,

and Kn denotes the number of segments. The set of generated class-agnostic
segments for all the training images is denoted as Ω0:

Ω0 = {M i
n; for n = 1, ..., N and i = 1, ...,Kn}, (2)

Shape prior-based filtering. Typically, the segment instances in Ω0 mainly
contain non-target tissues including the background, with only a small set con-
taining the target class. Thus, we need to filter out irrelevant segments before
using it to train a segmentation model. To achieve this, we first filter valid
pseudo-labels based on general shape priors of the target, such as aspect ratio
and size. The set of valid pseudo-labels Ωv is:

Ωv = {M i
n|M i

n ∈ Ω0 and V i ∈ [Vmin, Vmax] and Ai ∈ [Amin, Amax]}, (3)

where V i is the ratio of M i
n’s area in the entire image, and Ai is the aspect ratio

of segment M i
n. Vmin and Vmax are the minimal and maximal segment area ratio,

and Amin and Amax are lower and upper bounds for aspect ratio. These basic
shape priors can effectively filter out irregular segments that are too small/large
or have an uncommon aspect ratio.

Class-specific pseudo-labels based on ROI feature clustering. Al-
though the prior-based filtering can reject a large number of irrelevant segments,
the valid pseudo-label set Ωv still contains some background ROIs that have
shape and size similar to the target, making it desirable to identify the exact
class of each ROI. Although CLIP can be used for this purpose [2], its perfor-
mance is limited by the lack of domain-specific knowledge in medical imaging,
especially for fine-grained tissue classes. To overcome this, we propose a shape-
robust ROI clustering method for selecting target segments.

Inspired by Fast R-CNN [9], instead of extracting feature for each ROI, we
extract the feature map for each training image via a feature extractor in a single
forward pass. Due to SAM’s lack of semantics [18], we used an on-the-shelf pre-
trained encoder, DINO [4], as the feature extractor θe. The feature zin ∈ RD of
an ROI M i

n is obtained by ROI pooling from Fn ∈ RD×H′×W ′
, where D is the

dimension of features. The set of features based on Ωv is denoted as:

Fv = {zin|M i
n ∈ Ωv} with zin = Poolroi(Fn,M

i
n), (4)

where Poolroi(Fn,M
i
n) is the ROI pooling operation based on Fn and M i

n, i.e.,
the features for pixels in M i

n are averaged.
Then, the ROI instances in Ωv are clustered based on Fv. For simplicity,

we used the K-means [15] clustering method. After clustering, the cluster with
the minimal discrepancy with the prior attribute of the target is selected as the
target-class pseudo-labels. Let M j

k denote the j-th ROI in the k-th cluster Ck,
and A(M j

k) denotes its attribute, such as size and aspect ratio. The cluster-level
attribute is denoted as Ak =

∑
j A(M j

k)/|Ck|. The average prior attribute for
the target is denoted as Â. The ROI cluster corresponding to the target class is
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Ck∗ = argmink |Ak − Â|, i ∈ [1,K], where |·| is the L1 loss. For each unlabeled
image Xn, the pseudo-label Yn is set as the mask of M i

n that in Ck∗ , otherwise
empty if none of its M i

n is in Ck∗ . The training set with target-class pseudo-labels
is therefore denoted as:

Dp = {(Xn, Yn)}Nn=1 with Yn =

{
M i

n, if ∃M i
n ∈ Ck∗

0, Otherwise , (5)

2.2 Triple Knowledge Distillation from SAM to task-specific model

Given SAM’s high computational cost and reliance on manual prompts, we train
a lightweight task-specific model θs for automatic and efficient segmentation. As
a baseline method, pseudo-label Yn from Dp is used to supervise θs, where Yn

from SAM serves as logit-level distillation. The pseudo-label KD loss Lplkd is:

Lplkd =
1

N

N∑
n=1

(
Lce(Pn, Yn) + Ldice(Pn, Yn)

)
, (6)

where Pn denotes the downstream model θs’s prediction for Xn. Lce and Ldice are
standard Cross-Entropy (CE) loss and Dice loss for segmentation, respectively.
As pseudo-label Yn is noisy, using Lplkd to supervise θs can yield suboptimal re-
sults. To avoid this, we propose two novel objectives: class-level feature KD that
aligns feature of θs with that of SAM for each class, and class-level contrastive
KD that encourages inter-class feature dissimilarity for both θs and SAM.

First, unlike traditional approaches [18] that rely on hard segmentation re-
sults, we leverage soft predictions from θs to obtain class prototypes for robust-
ness against noise. Let P c

x denote the probability of pixel x being class c obtained
by θs. The feature maps obtained by the bottleneck of θs and SAM are denoted
as F and F ′, respectively. The prototypes for class c obtained by θs and SAM
are denoted as gc and g′c. The class-level feature KD loss Lcfkd is defined as:

Lcfkd =

C−1∑
c=0

||gc − g′c||22 =

C−1∑
c=0

||
∑

x Fx · P c
x∑

x P
c
x

−
∑

x F ′
x · P c

x∑
x P

c
x

||22, (7)

where C is the number of classes for the segmentation task. || · ||2 is the L2 norm.
Second, to further enforce intra-class consistency and inter-class separabil-

ity, we introduce a class-level contrastive KD loss Lcckd, which encourages the
prototypes of the same class to be close while those from different classes to be
further apart. We set (gc, g′c) as a positive pair, and (gc, g′j) and (gc, gj) as
negative pairs, where j ̸= c. Lcckd is formulated with the InfoNCELoss [24] as:

Lcckd = −
C−1∑
c=0

log
esim(gc,g′c)/τ

esim(gc,g′c)/τ +
∑

j ̸=c e
sim(gc,g′j)/τ +

∑
j ̸=c e

sim(gc,gj)/τ
. (8)

where τ is the temperature, and sim(·, ·) represent cosine similarity. Overall, the
downstream segmentation model θs is trained with the joint loss function:

Ltotal = Lplkd + λ1Lcfkd + λ2Lcckd, (9)

where λ1 and λ2 are hyper-parameters for the weights of the feature KD losses.
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3 Experiments and Results

3.1 Datasets and Implementation Details

In this work, we evaluated UM-SAM and compared it with several previous
works on two medical image segmentation datasets: 1) Fetal Brain (FB) [7,8]
dataset that contains 115 Half-Fourier Acquisition Single-shot Turbo spin-Echo
(HASTE) sequences from pregnant women in the second trimester, which ran-
domly divided into 80, 10 and 25 cases for training, validation and testing, re-
spectively. 2) Promise12 dataset [21] that consists of 100 transverse T2-weighted
Magnetic Resonance (MR) images collected from four medical centers. We used
50 training cases, 30 test cases, and 20 live challenge cases from this dataset
for training, validation, and testing, respectively. For quantitative evaluation,
we adopted the commonly used Dice Similarity Coefficient (DSC) and Average
Symmetric Surface Distance (ASSD) in 3D space.

For preprocessing, the intensity of each volume was clipped to the 1st and
99th percentile of the values and normalized to [0, 1]. For SAM, we use the offi-
cially released version with the ViT-H model for mask generation and its image
encoder’s offline features for efficient feature KD. To balance the recognition of
targets and the number of segments, m was 32 and 48 for the FB and Promise12
datasets, respectively. Given the characteristics of the fetal brain and prostate,
we set Vmin and Vmax as (0.01, 0.25) and (0.01, 0.2), Amin and Amax as (2/3,
1.5) and (0.5, 2) for the FB and Promise12 datasets, respectively. K was 8 and
10 for the FB and Promise12 datasets using the Sum of Squared Error (SSE)
method [31]. The attribute A was the aspect ratio for the FB dataset (Â =
1.0) and ROI size for Promise12 (Â = 1200 mm2 according to the normal size
of prostate in a 2D slice). We trained UNet [28] as θs for 200 epochs with a
batch size of 32 using a Stochastic Gradient Descent (SGD) optimizer, where
the momentum was 0.9, and the weight decay was 5× 10−4. Data augmentation
methods include random cropping with a size of 256x256, random rotation and
noising. Following [11], τ in Eq. (8) was set as 0.5 for both datasets. Based on
the best results on the validation set, λ1 and λ2 in Eq. (9) were set as 0.1 and
0.01 for the FB dataset, and 0.5 and 0.01 for the Promise12 dataset, respectively.
During inference, we used θs to obtain segmentation results.

3.2 Comparison with state-of-the-art methods

Comparison with prompt-based segmentation methods. To evaluate the
effectiveness and efficiency of our method, we first compared it with prompt-
based foundation models: 1) SAM [16], which leverages foreground points (fg),
background points (bg) or bounding box (bbox) for each positive slice as prompt;
2) SAM2 [27], which treats 3D volumes as videos and employs a foreground point
or bbox prompt for target tracking; 3) CryoSAM [35], which expands a given
point prompt for segmentation by matching features based on their similarity
with extracted target features. Results are listed in Table 1, where αbbox denotes
a bbox expanded by α times that of ground truth bbox for simulating user inputs.
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Table 1. Quantitative comparison of several existing prompt-based and unsupervised
methods on FB and Promise12 datasets.

Method Prompt type
FB Promise12

DSC (%) ASSD (mm) DSC (%) ASSD (mm)

SAM [16] 1 fg+1 bg/slice 86.78±8.27 16.11±29.87 61.89±14.04 12.18±11.05
SAM [16] 1.3 bbox/slice 89.19±3.27 2.73±1.52 82.33±3.59 1.80±0.85
SAM [16] 1.4 bbox/slice 85.52±3.79 5.29±2.88 78.00±3.66 3.02±1.34
SAM2 [27] 1 fg/volume 46.70±27.77 108.69±133.22 32.03±22.53 43.13±56.55
SAM2 [27] 1 bbox/volume 60.21±17.47 35.58±22.86 60.82±22.95 7.56±8.11

CryoSAM [35] 1 fg/volume 44.64±20.86 32.78±56.74 39.45±22.41 16.77±10.34

Kmeans (intensity) [15] / 59.45±12.04 33.39±61.20 39.94±9.96 27.71±22.63
Kmeans (DINO) [4] / 68.90±12.33 8.79±25.10 63.82±7.57 4.01±3.19

SaLIP [2] / 76.63±14.20 75.96±129.91 32.32±18.33 84.51±61.37
MedCLIP-SAM [17] / 60.56±21.53 11.94±21.69 10.62±10.10 68.93±45.90

Ours / 90.15±4.87 0.76±0.88 80.44±9.60 1.04±0.76

FullySup dense label 96.26±2.75 0.19±0.10 88.34±3.22 0.48±0.18

It shows that the performance of prompt-based methods is highly dependent on
user inputs. In contrast, our method achieved comparable or even superior results
without requiring manual annotations during inference, obtaining a mean DSC
of 90.15% and 80.44% on the FB and Promise12 datasets, respectively.

Comparison with unsupervised segmentation methods. Additionally,
we compared our method with several unsupervised methods, including 1) K-
means (intensity) and K-means (DINO), which perform K-means clustering [15]
based on image intensity and features from DINO [4], respectively; 2) SaLIP [2]
and 3) MedCLIP-SAM [17]. For K-means-based methods, we took the cluster
with maximal overlap with the ground truth as the segmentation result. We pro-
vide the class label for each slice with SaLIP and MedCLIP-SAM, as they require
information about the existence of the target. Results in Table 1 demonstrate
that SaLIP [2] obtained a satisfactory Dice (76.63%) for the fetal brain, but the
value is very poor (32.32%) for the prostate, which is mainly caused by the miss-
ing information for the prostate from CLIP. Similarly, MedCLIP-SAM [17] also
obtained a poor performance that is even worse than K-means-based methods.
Compared with them, our method improved the average DSC by over 13.52 and
16.62 percentage points for the fetal brain and prostate, respectively. Fig. 2 visu-
ally shows that compared to these methods, our method achieved more accurate
segmentation results, with boundaries closely aligned to the ground truth.

3.3 Ablation study

Effectiveness of pseudo-label filtering strategies. To evaluate our filter-
ing strategies, we employ an ROI-level precision score to measure the quality
of the generated pseudo-label sets, which is defined as the fraction of true pos-
itive pseudo-labels (IOU with ground truth > threshold T ) among all retrieved
pseudo-labels. Fig. 3(a) shows the precision scores across different IOU thresh-
olds (0.1 to 0.9) for the class-agnostic pseudo-label set Ω0, the valid pseudo-label
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SAM(bbox) CroySAM Kmeans(DINO) OursSaLIP MedCLIP-SAMSAM2(bbox)Image

FB

Promise12

Fig. 2. Visual comparison of our method with existing methods. Red and green con-
tours indicate the boundary of ground truth and prediction, respectively.

(a) Ablation study on pseudo-label filtering methods (b) Ablation study on the triple KD strategy

Fig. 3. Ablation study on pseudo-label filtering methods and the triple KD strategy.

set Ωv, and the target-class pseudo-label set Dp. The precision scores for Ω0 were
consistently low due to the large amount of irrelevant segments from SAM’s
everything mode. After applying shape prior-based filtering and ROI feature
clustering, the precision scores for Ωv and Dp improved significantly.

Effectiveness of our triple knowledge distillation strategy. Fig. 3(b)
summarizes the results of each component in the triple KD strategy on the vali-
dation sets of the FB and Promise12 datasets. The baseline is applying Eq. 5 to
testing images to obtain target-class labels without training θs. Compared with
it, training with Lplkd significantly improved the mean DSC values from 78.36%
and 61.16% to 86.59% and 78.20% on FB and Promise12 datasets, respectively.
Introducing Lcfkd or Lcckd to Lplkd improved the segmentation model’s per-
formance on both datasets. Combining the three KD losses further enhanced
results, indicating the effectiveness of the proposed triple KD loss.

4 Conclusion

This work proposes an unsupervised medical image segmentation method, UM-
SAM, based on the foundation model SAM. To generate pixel-wise pseudo-labels,
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we leverage SAM to automatically partition images into multiple class-agnostic
segments, followed by shape prior-based filtering and ROI feature clustering for
target retrieval. A triple KD strategy is proposed to enhance the performance of
segmentation model in the presence of noisy labels. Experimental results on the
FB and Promise12 datasets show that UM-SAM outperformed existing unsuper-
vised methods, and achieved comparable performance to promptable methods
with tight prompts. It is of interest to extend our method to other SAM variants
and apply it to multi-class and 3D segmentation tasks in the future.
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