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Abstract. Neurological diseases, such as schizophrenia and attention
deficit hyperactivity disorder (ADHD), alter functional connectivity (FC)
and are often accompanied by cognitive deficits. Leveraging shared neural
mechanisms underlying both neurological disease and cognitive deficits
can enhance diagnostic accuracy. However, due to the complex neural
mechanisms of these conditions, diagnosing them based on FC alone
still presents challenges in terms of accuracy and biomarker reliability.
To address these challenges, we designed a meta-analysis guided multi-
task graph transformer network to simultaneously predict neurological
disease and cognitive deficits and examine alterations in brain FC associ-
ated with these conditions. The framework employs a graph transformer
method as the encoder and integrates a joint attention mechanism to
capture shared disease—cognition features while utilizing saliency pool-
ing to extract saliency weights for each task. To enhance the reliability
of saliency weights, we incorporate meta-analysis guidance that aggre-
gates data from 470 functional studies in the BrainMap database. Then,
we establish reference probability maps for brain activations associated
with neurological diseases and cognitive deficits using a Naive Bayes
classifier. The saliency weights learned from saliency pooling are then
constrained to align with these references using Pearson correlation. Ex-
periments on the COBRE and ADHD-200 datasets indicate that our
proposed method outperforms state-of-the-art multi-task learning mod-
els in classifying schizophrenia and ADHD, as well as in predicting their
related cognitive deficits. Moreover, the biomarkers extracted from our
models exhibit biologically meaningful patterns.

Keywords: Meta-analysis - Multi-task learning - Graph transformer -

Functional connectivity - Neurological disease - Cognitive deficits.

1 Introduction

Neurological diseases, such as schizophrenia (SZ) and attention deficit hyper-
activity disorder (ADHD), are frequently accompanied by cognitive deficits in
domains including working memory, social cognition, language, and attention
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Fig. 1. MAG-MT employs a general, powerful, scalable graph transformer (GPS) con-
volution as a common encoder and graph attention (GAT) convolution as task-specific
encoders. A joint attention module using multi-head cross-attention identifies shared
features across tasks. Finally, a decoder—with a saliency pooling layer and an indi-
vidual MLP for each prediction—generates task-specific outcomes, and the saliency
weights are constrained by reference probability maps from meta-analysis.

[1,2], suggesting a shared underlying mechanism. Functional connectivity (FC),
which is derived from resting-state fMRI (rs-fMRI) by capturing neural activity
fluctuations through blood-oxygen-level-dependent signals, is valuable for distin-
guishing patients and controls [3,4] and for estimating various cognitive states
[5, 6]. Given the shared mechanisms between neurological diseases and cognitive
deficits, leveraging their unique and shared features based on FC may improve
both neurological disease diagnosis and cognition prediction.

Multi-task learning effectively exploits common features across tasks to en-
hance overall performance [7-9]. For example, [8] developed a brain transformer
network that employs a shared encoder to predict multiple cognitive scores.
However, many existing methods do not fully leverage the complementary in-
formation available across tasks. To address this, [9] introduced an MLP-based
mechanism to capture both shared and complementary features for various cog-
nitive predictions. Nevertheless, due to the complexity of the neural mechanisms
underlying multiple tasks, current approaches still lack a robust solution to iden-
tify reliable biomarkers for different tasks.

Meta-analysis aggregates data from numerous previous studies, such as those
in the BrainMap database [10], and identifies brain activation regions associ-
ated with various conditions that serve as valuable biomarker references [11-13].
Specifically, statistical methods—such as the Naive Bayes classifier [14]—are em-
ployed to compute the probability of a region of interest (ROI) associated with
each condition, thereby generating a reference map for each. Incorporating these
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reference maps into a multi-task learning framework could provide useful and
reliable prior knowledge for informative feature learning and guide model train-
ing for multiple tasks. However, current research has not integrated this prior
knowledge into neurological disease diagnosis or cognitive prediction.

This study proposes a meta-analysis guided multi-task graph transformer
network (MAG-MT) to simultaneously predict neurological disease and cogni-
tive deficits, and to examine associated brain FC changes, as shown in Fig.
1. A graph transformer convolution serves as a common encoder, while sepa-
rate graph attention convolutions extract disease-specific and cognition-specific
node embeddings. A joint attention module, incorporating a multi-head cross-
attention mechanism, identifies shared features that contribute to both neuro-
logical disease and cognitive predictions. The combined shared and task-specific
features are fed into a decoder for final predictions. The decoder employs saliency
pooling to select salient regions for each task and uses two separate multilayer
perceptrons (MLPs) to simultaneously predict the respective outcomes. To guide
model training, we incorporate meta-analysis-derived prior knowledge by gener-
ating reference probability maps from the BrainMap database and constraining
the saliency weights learned from the saliency pooling to align with these refer-
ence maps via additional loss functions. Experiments demonstrate that MAG-
MT outperforms state-of-the-art multi-task learning methods on both COBRE
and ADHD-200 datasets, as well as in related cognitive prediction. Furthermore,
MAG-MT yields interpretable saliency maps that reveal distinct regional con-
tributions: in the COBRE dataset, the postcentral and anterior frontal cortices
are most relevant for SZ classification, while the prefrontal and occipital regions
are linked to cognitive deficits; for ADHD-200, the lateral temporal and middle
frontal cortices are most relevant for ADHD classification, with the insula and
inferior frontal cortex most related to cognitive deficits.

2 Materials and Methodology

2.1 Datasets and Image Preprocessing

We used the publicly available Center for Biomedical Research Excellence (CO-
BRE) [15] dataset (135 participants: 75 healthy controls, 60 SZ patients) for
SZ and its related cognitive deficits prediction, and the ADHD-200 [16] dataset
(489 participants: 256 healthy controls, 233 ADHD patients) from three sites for
ADHD and its related cognitive deficits prediction. Rs-fMRI images were prepro-
cessed using fMRIPrep [18], and functional connectivity (FC) was constructed
from 264 ROIs defined by the Power atlas [17]. Cognitive function was assessed by
averaging scores for working memory, social ability, and verbal learning (range:
30-100) for SZ, and by full-scale 1Q (range: 78-153, covering attention, working
memory, and reasoning) for ADHD. To build the reference map, we selected 160
functional studies on SZ using the keyword “schizophrenia” and 160 studies on
its cognitive deficits using the keywords “working memory”, “social cognition”,
and “language” via the Sleuth toolbox [23] from the BrainMap database, and
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similarly selected 75 studies on ADHD using the keyword “ADHD” and 75 stud-

ies on its cognitive deficits using the keywords “attention”, “working memory”,
and “reasoning”.

2.2 Multi-task graph transformer network

Graph Representation Construction For each subject, a functional graph
G = (A, X) is constructed, with ROIs as nodes and connections as edges. A €
RY*N denotes the adjacency matrix, which is obtained by thresholding the FC
matrix to retain the top 10% of edges [19] for each node, thereby preserving
connection sparsity. X = {x1,Xa,...,Xny} € R¥*M contains the features for the
N nodes, where each x,, is an M-dimensional feature of node n, defined as its
connections with all nodes.

Common and Specific Encoders The common encoder captures features
shared by brain neurological disease and cognition predictions. It consists of
one layer of general, powerful, scalable graph transformer (GPS) convolution
[20], which combines traditional transformer and spatial graph convolution tech-
niques to effectively learn node representations, followed by a rectified linear unit
(ReLU) activation. Task-specific encoders for neurological disease and cognition
extract relevant features using one layer of graph attention (GAT) convolution
[21] followed by a ReLU activation. GAT convolution, with its low parameter
count, is well-suited for multi-task settings. The disease-specific node embed-
dings are generated as:

X4 = ReLU [GATl (ReLU(GPS(X)))} € RVXM', (1)

where M’ is the length of node embeddings. Cognitive-specific node embeddings
X¢ € RV*XM" are obtained similarly.

Joint Attention Module The joint attention module uses multi-head cross-
attention to identify shared node embeddings for neurological disease and cog-
nition. Given cognitive-specific embeddings X¢ and neurological-specific embed-
dings X9, for each attention head h, we compute,

Q" =XW"h  Kh=XIWEr  Vvh=XIWVI he{l,. H}, (2

with learnable parameters W@ W2 and WV:» Q" K" and V" ¢ RN
represent the query, key and value matrices in h-th head, respectively. Each

) o R — Q (K" \vrh : ;
head’s output is: E softmax( YT )V" and H is the number of attention

heads. The joint feature X' is then formed by concatenating all heads an(/l ap-
plying a linear projection: X = concat(E', E2, ..., E¥ )W, where W € RM *xM
is learnable. The joint attention module thus learns shared features between
neurological disease and cognitive functioning predictions. Finally, to effectively
integrate task-specific features and shared features, the joint feature is added
clement-wise to the original embeddings: X'¢ = X¢ 4+ X ; X'4 = X4 + X'



Title Suppressed Due to Excessive Length 5

Decoder For each task, the decoder consists of a saliency pooling operation and
an MLP model including two fully connected layers, dropout, and ReLU acti-
vation function for final prediction. The saliency pooling is adapted from top-K
pooling [22], preserving the most informative node embeddings while discarding
less relevant ones. Taking the cognition decoder as an example, a trainable pro-

jection vector p¢ € RM X1 is employed to compute a weight for each node, and
the propagation rule of saliency pooling is: y© = X,CpC/HpCH7 where y© € RVX1
is the weights indicating the retention potential of all nodes. The u nodes with
highest weights (i.e., idx® = rank(y©, u)) are selected, where idz® represents the
indices of u selected nodes. The weights for the u nodes are passed through a
sigmoid function, while weights for all other nodes are set to zero:

o | sigmoid(y$), i€ idx®
Yi _{0’ l%ldl‘c (3>

where y© € RN*1 represents the saliency weights of all nodes. The final cognition-
specific node embeddings are computed as: X'e=X"@ ycl, where ® denotes
element-wise multiplication. This process ensures that saliency weights reflect
the importance of nodes. The final node embeddings for neurological disease
X"4 are obtained similarly, and MLPs are used for prediction.

2.3 Meta-analysis Constraint

Generation of Reference Probability Maps The BrainMap database pro-
vides foci MNI coordinates in brain regions associated with neurological disease
or cognition in each FC study. For each study, we mapped the coordinates onto
264 ROIs, thereby identifying the activated and non-activated ROIs relevant to
conditions. A Naive Bayes classifier was used to compute the probability of each
ROI contributing to neurological disease and cognition across all studies [14],
generating the reference probability maps S% and S¢ € RV*!, where each entry
represents the probability of an ROI being associated with neurological disease
or cognition, respectively. For consistency with saliency weights from pooling,
we retained the highest u probabilities in S? and S¢, setting all others to zero.

Incorporation of Reference Probability Maps To integrate meta-analysis
guidance, we introduce two additional constraints, L,,. and L,,q, that encourage
the saliency weights to match the reference probability maps from meta-analysis.
Specifically, these constraints are defined as:

Ly = ZB

Jj=

, B
1(1 —corr(S5,¥5));  Lma= Z

j=

1(1 — corr(S?,y;-d)). (4)

corr indicates the Pearson correlation coefficient, and B is the number of sub-
jects. For neurological disease classification, we use cross-entropy loss (Lg); for
cognition prediction, we use root mean square error (RMSE, L.). The overall
loss is defined as: L = L. + Lg+ A(Lme + Lima), with A controlling the weight of
the meta-analysis constraint.
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Table 1. Mean (standard deviation) of performance measures on COBRE (top) and
ADHD-200 (bottom) based on FC.

Methods Cognition prediction Schizophrenia classification
Correlation| RMSE MAE Accuracy |Sensitivity |[Specificity
GAT (MT) |0.43(0.02) {11.69(0.74) [9.59(0.66) [0.75(0.05) |0.76(0.05) |0.75(0.05)
GPS (MT) [0.45(0.05) {11.38(0.86) {9.45(0.71) [0.77(0.05) |0.78(0.06) |0.77(0.05)
ML-Att 0.46(0.02) |10.95(0.88) |9.08(0.63) 0.79(0.05) [0.79(0.06) |0.79(0.05)
MT-brain [0.47(0.03) |10.87(0.63) |8.92(0.57) [0.78(0.06) |0.79(0.07) |0.78(0.06)
Ours 0.51(0.02) (10.24(0.70) |8.26(0.61) |0.81(0.05) |0.82(0.05) [0.81(0.04)
Methods Cognition prediction ADHD classification
Correlation| RMSE MAE Accuracy |Sensitivity |Specificity
GAT (MT) |0.38(0.03) {13.93(0.86) [11.80(0.97) 0.66(0.04) |0.66(0.04) |0.66(0.04)
GPS (MT) [0.41(0.05) {13.21(0.83) |11.25(0.89) |0.67(0.06) |0.68(0.05) |0.67(0.08)
ML-Att 0.43(0.04) |12.76(0.76) |11.08(0.60) |0.69(0.07) [0.69(0.07) |0.69(0.08)
MT-brain [0.44(0.03) {12.65(0.89) [10.69(0.74) {0.69(0.07) |0.70(0.08) |0.69(0.06)
Ours 0.47(0.04) (12.31(0.84) |10.33(0.91) |0.71(0.04) |0.72(0.05) [0.71(0.05)
Performance change with u Performance change with 1
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Fig. 2. The results of cognition and neurological disease prediction changes with dif-
ferent u in saliency pooling and A on COBRE and ADHD-200 datasets.

2.4 Implementation

All models were implemented on an NVIDIA A100 GPU. We computed the
mean and standard deviation over ten runs. To reduce overfitting, we incorpo-
rated dropout layers (dropout rate = 0.5) in the MLP layer, applied L2 regu-
larization (weight = 0.001), and employed early stopping. The Adam optimizer
was used with a batch size of 10. The learning rate and number of epochs were
set to 0.001 and 40 for the COBRE dataset, and 0.0001 and 40 for the ADHD-
200 dataset, respectively. We conducted 5-fold cross-validation, and calculated
the mean accuracy and standard deviation across 10 runs. Pearson’s correlation
coefficient, RMSE, and mean absolute error (MAE) were used to quantify the
differences between the true and predicted cognitive values, while accuracy, sen-
sitivity, and specificity were used to assess the classification performance. The
code is available at: https://github.com/qiezi005/meta-guided.

3 Experiments and Results

Competing Methods and Hyperparameter Setting We compared our
method against GAT, GPS, and two state-of-the-art multi-task learning methods



Title Suppressed Due to Excessive Length 7

. . ‘gt COBRE I Single-task ~ wio Att
os Cognlt:xe function predlctloT2 0o SZ classification 000 = T
0.5
I 12 10 0.8
o Iiq L1; LIEN igf i
0.3 10 i 8 i 0.7
0.2 8 6 0.6
Correlation RMSE MAE Accuracy Sensitivity Specificity
Cognitive function prediction ADHD-200 ADHD classification Sllr‘;g(l:ec;lnassk .gluor:\n
0.6 16 14 0.8
i ! | [Lgg ilEg ilg
0.4 I I ]: 12 I I 10 I I 0.6
0.3 10 8 0.5
0.2 8 6 0.4 —
Correlation RMSE MAE Accuracy Sensitivity Specificity

Fig. 3. Results of the ablation study of MAG-MT, comparing with three ablated vari-
ants for COBRE and ADHD-200 datasets. The performance of our model is significantly
better than the ablated variants, confirmed by the Student’s t-test (p<0.05).

based on brain FC. For multi-tasking (MT) structure, we constructed GAT
(MT) by incorporating a shared GAT convolution layer along with two task-
specific GAT convolution layers for simultaneous regression and classification; a
similar construction was applied to GPS (MT). MT-brain [8] employs a brain
network transformer as a common encoder for multiple cognition prediction,
while ML-Att [9] incorporates a joint mechanism for multi-task FC analysis.
The number of attention heads in GPS and MT-brain was set to 4, matching
our method. The convolution kernel in ML-Att was configured according to its
original publication. For our model, the dimension of node embeddings was tuned
across the range [32, 64, 96, 128, 256]. For SZ classification, the highest accuracy
was achieved with a dimension of 64, while for ADHD prediction, the optimal
performance was obtained with a dimension of 128. H was set to 4. A\ was set
to 1, and w in saliency pooling was set to 27, based on the best performance
in Fig. 2 on both datasets. Each of MLP; and MLP, consisted of two fully
connected layers. For regression tasks, the layers contained 256 and 1 hidden
node, respectively, while for classification tasks, they included 256 and 2 hidden
nodes.

Table 1 shows the comparison results on the COBRE and ADHD-200 datasets,
listing the mean and standard deviation of ten runs. ML-Att and MT-brain can
achieve better performance than GPS (MT) and GAT (MT). Moreover, our
model significantly outperformed other methods on both tasks, as confirmed by
a Students’ t-test (p < 0.05). Compared with ML-Att and MT-brain, our method
significantly improved accuracy by 2.5% to 3.8% on SZ classification and 8.5%
to 10.9% on its related cognition prediction, respectively. Similarly, our method
achieved improvements of 2.9% for ADHD classification and 6.8% to 9.3% for
cognition prediction. We attribute these improvements to the utilization of the
joint attention module and meta-analysis constraints to guide the model.

Ablation Study To evaluate the effectiveness of the joint attention module and
meta-analysis constraints, we compared the proposed model against three ab-
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Fig. 4. The top 27 discriminative ROIs identified by saliency pooling were associated
with neurological disease and cognitive deficits on both datasets.

lated variants: 1) GPS on the single task; 2) a model without joint cross-attention
(w/o Att); 3) a model without the meta-analysis constraints (w/o Cons). Fig. 3
shows that incorporating the joint attention module significantly improves per-
formance, highlighting the importance of capturing shared features. The addition
of the meta-analysis constraints (ours) gets significant improvements compared
with other ablated variants. We infer that the meta-analysis constraints guide
the model to avoid learning shortcuts that may otherwise lead to overfitting.

Discriminative ROIs for Prediction Asshown in Fig. 4, for SZ, the postcen-
tral gyrus, temporal—parietal junction, right anterior frontal cortex, and cerebel-
lum strongly contribute to neurological disease classification, while the frontal,
occipital, and temporal gyri are primarily associated with cognitive deficits. No-
tably, abnormalities in the right anterior frontal lobe are linked to negative SZ
symptoms (e.g., flattened affect, alogia, abolition) [24], and temporal-parietal
junction changes correlate with impaired social perception, theory of mind, and
auditory hallucinations [25,26]. These regions significantly correlate with the
reference probability maps from BrainMap (r = 0.62,p < 0.001 for SZ, and
r = 0.69,p < 0.001 for cognition), validating the meta-analysis constraint.

For ADHD, the most discriminative regions for classification are in the mid-
dle frontal gyrus, superior parietal, and lateral temporal cortices, which often
exhibit reduced activity or structural abnormalities underlying attention deficits.
Key regions for cognitive deficit prediction include the insula, inferior frontal, and
lateral temporal cortices; here, the insula integrates internal states and emotions
[27], while the inferior frontal cortex supports response inhibition and decision-
making [28,29]. These regions also show significant correlations with the refer-
ence probability maps (r = 0.53,p < 0.001 for ADHD, and » = 0.55,p < 0.001
for cognition), indicating that the model can learn general biomarkers consistent
with findings from hundreds of studies.
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4 Conclusion

We propose using brain reference probability maps generated from meta-analyses
to guide a multi-task graph transformer network that simultaneously predicts
neurological diseases and cognitive performance. The resulting salient maps high-
light biologically meaningful biomarkers associated with ADHD, schizophrenia
(SZ), and confounded cognitive deficits. In future work, we aim to extend our
method to multi-disease classification applications.
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