
Reconstructing 3D Hand-Instrument Interaction
from a Single 2D Image in Medical Scenes

Miao Xu1,2, Xiangyu Zhu1, Jinlin Wu2, Ming Feng3, Zelin Zang2, Hongbin
Liu1,2, and Zhen Lei1,2,4⋆

1 Institute of Automation, Chinese Academy of Sciences, China
2 Centre for Artificial Intelligence and Robotics, Hong Kong Institute of Science,

Hong Kong SAR
3 Peking Union Medical College Hospital, China

4 School of Artificial Intelligence, University of Chinese Academy of Sciences, China
xumiao2021@ia.ac.cn

Abstract. Capturing the hand movements of physicians and their inter-
actions with medical instruments plays a critical role in behavior analysis
and surgical skill assessment. However, hand-instrument interaction in
medical contexts is far more challenging than in general tasks. The weak
texture and reflective properties of surgical instruments frequently result
in failures in pose estimation. Moreover, the long and thin shape char-
acteristics of the instruments and the sparse points of the reconstructed
hand lead to difficulties in accurately grasping the instrument or may
result in spatial penetration during interaction. To address failures in
pose estimation, we build 3D models of medical instruments as priors to
optimize instrument pose estimation. To resolve the issues of inaccurate
grasping and minimize spatial penetration, we propose a contact-point-
centered interaction module by refining the surface details of the fingers
to optimize the hand-instrument relationship computation. Experiments
on medical scenario data demonstrate that our method achieves state-
of-the-art performance across multiple evaluation metrics. Additionally,
the 3D models developed in this work encompass a wide range of surgical
instruments, based on real medical devices, and we will release them at
https://github.com/xumiao66/MedIns-3D to support and promote fur-
ther research.
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1 Introduction

The integration of medical practices and artificial intelligence has garnered grow-
ing attention from researchers. Computer-assisted interventions, which have di-
verse applications including surgical navigation systems [28], objective evaluation
of surgical skills [6,12,24], and advancements in robot-assisted surgery [5], rely
heavily on the precise analysis of surgical instrument trajectories and surgeon
⋆ Corresponding author: zlei@nlpr.ia.ac.cn
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hand movements. This analysis is crucial for optimizing the effectiveness and
accuracy of such interventions. At the same time, surgical instrument trajecto-
ries and surgeon hand movements are complementary and inseparable, sharing a
semantic relationship within the surgical space. Only by integrating the two and
representing them in an interactive state can surgical skills be better demon-
strated, thereby enhancing computer-assisted analysis.

In the domain of computational artificial intelligence, the existing meth-
ods for estimating the 3D pose of hands and objects using 2D images can
be effectively segregated into two primary classifications: optimization-based
methods[1,10,25,29] and learning-based techniques [3,17,4,9,8]. Optimization-
based approaches refine the pose of both the hand and object by considering
their contact surfaces while adhering to physical constraints such as attraction
and repulsion. The process of estimating the contact surface between the hand
and object typically proves to be time-intensive [7]. To tackle this challenge, Tse
et al. [25] introduced a graph-based network to expedite the estimation of the
contact surface. Contrastingly, learning-based methodologies devise integrated
models for simultaneous estimation of the poses of hands and objects. These
methods commonly leverage a readily available hand model, such as MANO
[23], and rely on the prior availability of a 3D object model. Consequently, they
can directly predict the poses of the hand and object based on these foundational
principles. Initial efforts [3,8] incorporate dual-stream backbones for independent
estimation of hand and object poses, albeit at the expense of heightened model
complexity. The objects explored in these fields are mainly bottles, bowls, and
similar items, where pose relationships are relatively easy to compute, and the
hand-object interactions are clearer.

However, these methods are not robust enough to be applied in medical sce-
narios. In a single hand image, particularly in real surgical scenarios, hands often
encounter various occlusions, including self-occlusions and occlusions caused by
the instrument, making hand motion regression exceedingly challenging. For
medical instruments, characteristics such as weak textures, reflective surfaces,
and slender structures render many general object pose estimation methods un-
suitable for direct application. Even after addressing these challenges, establish-
ing meaningful interaction between the hand and medical instruments remains
difficult. In medical scenarios, hand-instrument interaction needs to ensure that
the hand securely grasps the instrument and avoids spatial misalignment and
penetration errors, while the long and thin shape characteristics of instruments
lead to significant challenges.

To address the aforementioned challenges, we construct a medical instrument
3D model dataset (MedIns-3D), including surgical scalpels, scissors, and forceps
as priors to constrain the pose estimation pipeline. Subsequently, we proposed a
contact-point-centered interaction framework (CPCI) for reconstructing hand-
instrument interaction, eliminating the need for post-processing. In this frame-
work, we utilize the MANO [23] hand model as a prior to reconstruct hands
of physicians in images of complex medical scenarios, obtaining precise hand
motions and poses. For instruments, we initialize the estimation process using
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Fig. 1. Brief view of our method. It is a Hand-instrument Interaction network that
comprises an Instrument Initialization module for extracting instrument pose, a Hand
Initialization module for reconstructing hands, and an Interaction Module for trans-
forming the instrument into the hand space for interaction.

the 3D models from our constructed dataset, enabling accurate pose estimation
under weak textures and strong reflectivity. Subsequently, we propose a contact-
point-centered interaction module to estimate the contact points between the
hand and instruments, where a point up-sampling strategy is employed to con-
strain the fine-grained hand-instrument relationship computation by refining the
surface details of the fingers.

The contributions of this work can be summarized as follows:

– We propose a contact-point-centered interaction (CPCI) framework that
jointly reconstructs both hands, estimates instrument poses, and explicitly
models hand-instrument interactions in a unified manner.

– We introduce a hand mesh upsampling strategy to refine finger surface ge-
ometry, enabling more accurate contact region modeling and improving in-
teraction fidelity.

– We construct and will release a collection of 3D surgical instrument models
(MedIns-3D), which serve as geometric priors for pose estimation and can
benefit future research in surgical scene understanding.

2 Methodology

2.1 Hand Initialization

In this paper, the parametric hand model MANO [23] is utilized to set the initial
hand geometry. This model proficiently translates the pose parameter θ ∈ RJ×3,
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where J represents per-bone parts, and the shape parameter β ∈ R10 onto a
template mesh M̂ comprising vertices V . This mapping, denoted as ω, relies
on linear blending skinning with associated weights W ∈ R|V |×J . The resultant
posed hand mesh M can be derived using the following expression:

M = ω(M̂,W, θ, β). (1)

Physicians often operate with one hand holding a medical instrument, yet
images frequently depict both hands. If both hands overlap with the instrument
in the image, ambiguity arises, complicating the determination of contact points.
To address this problem, we perform the reconstruction of both hands simulta-
neously inspired by the method [30]. As illustrated in Figure 1, given an input
image I, we first use a CNN backbone E to extract image features F . These
features are then disentangled into two feature maps, representing the left and
right hands separately:

Fl,Fr = E(I). (2)

From these two feature maps, we independently regress the parameters for
both hands as well as the weak perspective camera parameters:

Pl, Pr, Pc = R(Fl,Fr), (3)

where Pl and Pr represent the left and right hands parameters. Pc denotes the
camera parameters. R is the regression module. Finally, the parameters are fed
into the MANO layer to generate 3D hand models. The original MANO mesh
[23], which comprises 778 vertices and 1538 faces, possesses a constrained capac-
ity to accurately represent nuanced details [2]. To refine the surface details of the
fingers and obtain more accurate interaction points for subsequent interaction
operations, we then split the vertices of fingers by taking the midpoints of the
three edges of each face three times, thereby upsampling the vertices.

2.2 Instrument Initialization

For medical instruments, which are characterized by their slender shapes, weak
textures, and reflective surfaces, reconstructing their 3D shape from monocular
images is highly challenging. Even if a coarse 3D shape is reconstructed, it often
negatively impacts subsequent pose estimation results.

To optimize the pose estimation of instruments and achieve more precise
hand-instrument interaction results, detailed 3D models of medical instruments
are required as priors. While datasets such as MedShapeNet [14] have released
a wide range of 3D medical shapes, they primarily focus on anatomical and di-
agnostic structures, and do not provide sufficiently detailed or interaction-ready
models of handheld surgical instruments. Therefore, we collect a medical instru-
ment 3D model dataset (MedIns-3D), consisting of 36 different types of medical
instruments, including scalpels, surgical scissors, scalpel handle, forceps, and sur-
gical blades. Subsequently, we modeled these instruments to obtain a series of
3D models with textures. Figure 2 shows some examples from the dataset.



3D Hand-Instrument Interaction from 2D Image 5

Fig. 2. Examples of the 3D instrument models we have constructed, which are based
on real medical instruments and include detailed texture.

Then we directly utilize the constructed 3D model of the instrument Vo as
initialization. By leveraging the accurate 3D model as a prior for the BundleSDF
[27], we optimize the pose estimation process to obtain the precise instruments
pose of each frame Pvo with high speed:

Pvo = B(I, Vo), (4)

where B is the pose estimation module. I denote the input image. The other
branch segments the mask of the instrument. Subsequently, the instrument
model is projected back to the image based on the pose obtained earlier. The
pose is refined iteratively by minimizing the error between the projected model
and the mask.

2.3 Contact-Point-Centered Interaction Module

After the hand and object initializations, we obtain the point clouds of the hand
and the instrument, along with their respective transformation matrices relative
to the image coordinate system. However, the hand and the instrument are not
defined within the same 3D coordinate system. While their projections might
appear overlapped in the 2D image plane, placing them in the same 3D space
reveals inconsistencies in scale and discrepancies in pose alignment. These issues
hinder accurate modeling of hand-instrument interactions and must be resolved
to achieve realistic and semantically meaningful results. A contact-point-centered
interaction module (CPCI) is designed to combine hands and instruments.

We render the previously obtained 3D hand into the image coordinate system
and get 2D hands vertices V 2d

l and V 2d
r :

V 2d
l = Render(Vl, Pc), V

2d
r = Render(Vr, Pc). (5)

It is important to note that the left and right hands are encoded separately, with
left-hand points assigned a value of 0 and right-hand points assigned a value of
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1. The instrument is also projected into the image coordinate system and gets
2D instrument vertices V 2d

o :

V 2d
o = Render(Vo, Pvo). (6)

Then we calculate the 2D overlap between the left and right hands and the in-
strument. Since physicians typically manipulate instruments using their fingers,
the overlap here is computed based solely on the fingertips and the instrument.
The overlap area is used to determine whether the left or right hand is involved
in the interaction. We then match the points in the overlapping regions based on
the closest distance, obtaining a set of corresponding hand-instrument points Xh

and Xi. Xh = {xh
1 ,x

h
2 , ...,x

h
n} is the set of n 3D points on the reference hand 3D

model, Xi = {xi
1,x

i
2, ...,x

i
n} is the set of n 3D points on the instrument model.

Utilizing these corresponding points, we compute the rotation angle R, transla-
tion offset T , and a scaling factor S by Least Squares Method. Through S, the
scale of the instrument is adjusted. Meanwhile, after corresponding points are es-
tablished, the module ensures that the instrument is appropriately aligned with
the hand and that no physical penetration occurs in 3D space. It continuously
monitors the interaction dynamics and adjusts the hand or instrument model if
necessary, ensuring that the grasp is physically plausible and semantically mean-
ingful. Finally, the 3D model of the instrument is transformed through R and
T , aligning it to the 3D space of hands.

3 Experiments

3.1 Implementation Details

We implement our network using PyTorch. For the backbone architecture of the
hand reconstruction network, we trained with ResNet-50 [11]. For a monocular
raw RGB input, no cropping or detection is needed; instead, all input images and
segmentation maps are resized to 512× 512, preserving the original aspect ratio
through zero padding. During training, we supervised the model using the L2 loss
on both MANO parameters and vertex distances. For the pose regression network
and instrument segmentation network, we employ BundleSDF [27] and Segment
Anything [13], respectively. Notably, we modify the BundleSDF framework by
utilizing the established instrument models to replace the reconstruction step,
and output the pose based solely on the current frame.

3.2 Datasets and Metrics

Datasets. We primarily conduct experiments on the POV-Surgery [26] dataset
to validate the effectiveness of our method. To evaluate the model’s generaliza-
tion ability, three bloodied glove textures and a scene generated from a 3D scan
of a surgical room are exclusively included in the test set.

Metrics. For the hand mesh recovery, our primary metric is the mean per-
vertex position error (PVE). Additionally, we employ Procrustes Analysis (PA)
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Fig. 3. Qualitative results on in-the-wild videos. Our method outperforms in handling
scenarios involving glove-wearing and various gripping techniques.

Table 1. The evaluation result of different methods on the test set of POV-Surgery,
including Solid Intersection Volume (IV) and Penetration Depth, measuring penetra-
tions, Proximity Error, evaluating the difference of the hand-object proximity, and HO
Motion Consistency, assessing the hand-object motion consistency.

Method IV↓ Penetration Depth↓ Proximity Error↓ HO Motion Consistency↓
HandOCCNet [19] 2.31 2.60 3.08 21.35
HandOCCNet+TOCH [31] 3.04 2.19 3.14 4.42
Hasson et al. [9] 1.96 2.01 3.19 7.26
Hasson et al. [10] 1.78 1.85 2.98 4.13
HOISDF [22] 1.52 1.65 2.87 1.85
CPCI w/o UP (ours) 1.14 1.63 2.23 0.50
CPCI (ours) 1.12 1.62 2.21 0.48

on the reconstructed mesh and report the PA-PVE after rigid alignment. We
also report the mean per joint position error (MPJPE) along with PA-MPJPE
and hand error is computed as the mean error between the left and right hands
[26]. For the interaction between the hand and instrument, we employ several
quantifiers, including Solid Intersection Volume (IV) and Penetration Depth to
measure penetrations, Proximity Error to assess the discrepancy in hand-object
proximity, and Hand-Object (HO) Motion Consistency to evaluate the consis-
tency of the hand-object motion.

3.3 Hand-instrument Interaction Comparison

To validate the effectiveness of our method in hand-instrument interaction, we
compare it with previous state-of-the-art hand-object interaction methods. It is
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Table 2. The evaluation result of different methods on the POV-Surgery. P2d denotes
the 2D hand joint reprojection error. MPJPE and PVE denote the 3D Mean Per Joint
Position Error and Per Vertex Error, respectively. PA denotes Procrustes alignment.

Method P2d↓ MPJPE↓ PVE↓ PA-MPJPE↓ PA-PVE↓
METRO [15] 30.49 14.90 13.80 6.36 4.34
HandTailor [18] 25.42 13.20 12.48 5.89 4.19
Mesh Graphormer [16] 20.36 12.75 12.68 5.46 4.32
WiLoR [21] 18.48 13.72 12.91 4.33 4.20
SimpleHand [32] 16.52 13.45 12.61 4.32 4.19
SEMI [17] 13.42 15.14 14.69 4.29 4.23
HandOCCNet [19] 13.80 14.35 13.73 4.49 4.35
HaMeR [20] 13.05 13.15 12.55 4.41 4.18
CPCI (ours) 12.08 12.21 12.25 4.21 4.20

important to note that, in order to ensure fairness, we have replaced the ob-
ject models used in previous methods with scanned models. HandOCCNet [19]
demonstrates excellent performance in hand reconstruction while holding ob-
jects. Based on this method, we obtain the pose of the instrument through
BundleSDF after reconstruction to enable interaction. Additionally, we use TOCH [31]
for post-processing to further conduct comparative analysis. Table 1 reports
the performance of our method in Solid Intersection Volume (IV), Penetration
Depth, measuring penetrations, and Proximity Error. Our method outperforms
other approaches. In Figure 3, we present the qualitative results of our method,
and our method avoids spatial penetration and failed grasping.

3.4 Hand Mesh Recovery Comparison

To validate the effectiveness of our method in hand mesh recovery, we compare it
with previous methods based on MANO on the POV-Surgery dataset. To ensure
fairness, every method is finetuned on the POV-Surgery dataset as the POV-
Surgery dataset consists of first-person perspective images with bloody gloves.
Table 2 reports the performance of our method in MPJPE, PVE, PA-MPJPE,
and PA-PVE. Our method performs well across all metrics.

3.5 Ablation Study

To achieve more stable hand-instrument interaction results, we adopt an upsam-
pling strategy to densify the sparse hand point cloud, thereby obtaining more
accurate contact points. To validate the effectiveness of this approach, we con-
ducted another baseline CPCI w/o UP by matching only 778 hand points after
projection, with all other aspects remaining the same. The results are presented
in Table 1, where it is evident that sparse hand points are insufficient for reliably
obtaining stable hand-instrument contact points, leading to larger errors.
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4 Conclusion

In this paper, we first build a medical instrument 3D model dataset (MedIns-3D)
as priors to constrain the pose estimation pipeline. Second, we also develop an
innovative framework that simultaneously reconstructs physicians’ hands and
estimates the pose of medical instruments. To ensure the hand can grasp the
instrument accurately while minimizing spatial penetration as much as possible,
we propose a contact-point-centered interaction module to estimate the contact
points between the hand and instruments, where a point up-sampling strategy
is employed. Finally, extensive experiments validate the effectiveness of our ap-
proach, demonstrating superior performance compared to existing methods.
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