
CD-PolypNet: Cross-Domain Polyp Segmentation
Network with Internal Feature Distillation and
Dual-Stream Boundary Focus via Large Vision

Model

Changpeng Yue1, Jianxiang Zhao1, Chao Wang1, Xinglun Zhao1, Axiu Mao1,
Jia Hou3, Chenggang Yan1, Kai Zhao2, and Shuai Wang1 (B)

1 Hangzhou Dianzi University, Hangzhou, China
2 First Medical Center, Chinese PLA General Hospital, Beijing, China

3 Lishui Institute of Hangzhou Dianzi University, Lishui, China
shuaiwang.tai@gmail.com

Abstract. Leveraging large vision models (LVMs), such as the Segment
Anything Model (SAM), in medical image analysis presents significant
potential to enhance diagnostic efficiency. Existing SAM-based medi-
cal segmentation methods inadequately address two critical challenges:
rapidly adapting LVMs to medical tasks through few-shot fine-tuning,
and the inherent difficulty in distinguishing lesions from anatomically
similar background regions in medical images. To overcome these limita-
tions, we propose CD-PolypNet, a novel framework integrating a Seman-
tic Supervision via Feature Distillation (SSFD) and an Edge-Guided Fea-
ture Branch (EFB). The SSFD module leverages feature distillation to
transfer knowledge from SAM’s strongly supervised features into early-
stage feature learning, enabling efficient domain adaptation of large vi-
sion models under data scarcity. Concurrently, EFB enhances boundary
discrimination in lightweight decoder through a hybrid strategy combin-
ing the Canny operator and Edge-Frequency Gated Convolution (EFG-
Conv), thereby prioritizing edge-aware feature extraction. Extensive ex-
periments across five challenging medical imaging datasets demonstrate
that our method not only surpasses state-of-the-art approaches in accu-
racy and robustness but also establishes a new paradigm for cross-domain
adaptation of large vision models in specialized medical applications. The
codes are available at https://github.com/ChangpengYue/CD-PolypNet.
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1 Introduction

In medical diagnostics, manual analysis of medical images by pathologists re-
mains time-consuming and labor-intensive. The emergence of machine learn-
ing, particularly convolutional neural networks (CNNs), has driven significant
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progress in automated lesion segmentation. CNNs demonstrate notable capabil-
ities in capturing local image patterns, achieving high precision through super-
vised learning on large annotated datasets. However, medical image annotation
requires specialized expertise, resulting in severe data scarcity that fundamen-
tally limits further improvements in supervised learning approaches.

Recent advancements in Transformer architectures have shifted research fo-
cus from CNNs by leveraging superior global contextual understanding, outper-
forming CNNs in natural image processing. Vision Transformer[6] (ViT) -based
models exhibit exceptional segmentation accuracy and generalization in natu-
ral and remote sensing imagery. However, in specialized domains like medical
imaging, such models struggle due to insufficient domain-specific knowledge. In
medical imaging, current research adapts Segment Anything Model[2] (SAM)
through parameter fine-tuning[7,1], automated prompting[8,33], and framework
enhancements[5,10]. Nevertheless, existing approaches fail to address the critical
challenge of enabling large vision models to rapidly learn discriminative features
from extremely limited annotated data.

Medical image segmentation faces persistent challenges, exemplified by polyp
segmentation in endoscopic imaging. Endoscopy, widely used in gastrointesti-
nal examinations, generates images where polyps exhibit ambiguous boundaries
due to overlapping textures, colors, and contrast with surrounding tissues. This
characteristic severely compromises segmentation accuracy, leading to frequent
misidentification or omission of lesion boundaries.

In this paper, we present CD-PolypNet, a novel framework that combines
Semantic Supervision via Feature Distillation (SSFD) and an Edge-Guided Fea-
ture Branch (EFB). The SSFD employs feature distillation to transfer knowl-
edge from SAM’s strongly supervised features to early-stage feature learning,
facilitating efficient domain adaptation of large vision models, especially when
data is scarce. Simultaneously, the EFB enhances edge detection in lightweight
decoder by integrating the Canny operator with Edge-Frequency Gated Con-
volution (EFGConv), prioritizing edge-aware feature extraction. Extensive ex-
periments on five challenging medical imaging datasets demonstrate that our
method outperforms current state-of-the-art approaches in both accuracy and
robustness, setting a new benchmark for cross-domain adaptation of large vision
models in medical applications.

2 Method

2.1 Overall Architecture

Our proposed architecture builds upon the SAM framework, which utilizes a
Masked Autoencoder[14] -pretrained ViT as its image encoder alongside a prompt
encoder and mask decoder. The overall framework is shown in Fig. 1. To address
the domain-specific challenges of medical image segmentation, we implement two
synergistic innovations. First, we freeze SAM’s image encoder parameters and in-
troduce a SSFD. This module hierarchically transfers semantically rich features
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 (a) Semantic Supervision via Feature Distillation

Fig. 1. Overview of the proposed CD-PolypNet, which consists of (a) Feature Distilla-
tion via Semantic Supervision (b) Edge-Guided Feature Branch.

from the decoder layers to supervise early-stage encoder features, compelling
the encoder to prioritize target regions with minimal training data. By aligning
encoder feature learning with decoder-level semantic priors, SSFD bridges the
generalization gap between natural and medical imaging domains.

Concurrently, we design an EFB to resolve the persistent weak boundary
problem in endoscopic images. The pipeline begins with a Canny[11] operator ex-
tracting gradient-based edge maps from raw images. These maps are fused with
encoder-derived features through EFGConv, which dynamically gates spatial
activations to amplify boundary-related signals. To further reinforce edge sensi-
tivity, multi-scale edge cues are recursively integrated into the encoder through
iterative Attentional Feature Fusion[15] (iAFF).

2.2 Feature Distillation via Semantic Supervision

Analyze the Features Learned in SAM To investigate the feature learning
dynamics within SAM, we apply class activation mapping (CAM) [12] to visu-
alize features extracted from selected encoder and decoder layers, as shown in
Fig. 2. The locations of the visualized features f1, f2, f3, fe, and ft are anno-
tated in Fig. 1. The visualization results reveal that early encoder features f1,
f2 and f3 exhibit strong global feature representation capabilities and contain
rich semantic information. However, during few-shot fine-tuning in LVM, these
features struggle to rapidly learn beneficial patterns. In contrast, the feature
ft from the decoder, which benefits from stronger supervision during training,
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Fig. 2. Visualization of SAM’s hierarchical features using CAM. All feature positions
are marked in the framework diagram, where ft denotes the target features, f1-f3
represent the supervised features in the SSFD and fe represents the high-dimensional
feature output by the SAM encoder.

demonstrates a higher focus on the target region and contains information that
is more aligned with the desired lesion mask.

Some past studies have shown that by adopting strategies such as knowledge
distillation and feature alignment, accurate features can be utilized to guide
those with less information[3,13]. Inspired by these works, we introduce a feature
distillation paradigm that leverages Cross-layer Feature Alignment. Specifically,
the encoder feature ft, which benefits from strong supervision, is utilized as
the target feature to guide the optimization of the shallow encoder features f1,
f2 and f3. Additionally, Intra-layer Feature Decorrelation is applied to f1, f2
and f3 to reduce feature interference and redundancy, thereby enhancing the
discriminative quality of the learned representations.

Cross-layer Feature Alignment The framework establishes semantic corre-
spondence between shallow encoder features and deep representations through
adaptive spatial matching. Given encoder feature fs ∈ RB×Cs×H×W and target
feature ft ∈ RB×Ct×H′×W ′

, we first align their spatial dimensions:

f̃s = P(fs) =

{
AdaptiveAvgPool(fs, (H ′,W ′)) H ̸= H ′

fs otherwise
, (1)

where s ∈ {1, 2, 3}, representing the three early-stage features of the encoder.
P(·) implements resolution matching through adaptive pooling. We then stochas-
tically select min(Cs, Ct) channels via uniform sampling without replacement,
yielding paired channel indices Is ⊂ [0, Cs) and It ⊂ [0, Ct). The cross-layer
distillation loss is computed as:
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LCfd =
1

B|I|

B∑
b=1

|I|∑
i=1

∥∥∥f̃ (b,Is[i])
s − f

(b,It[i])
t

∥∥∥2
2
. (2)

This process dynamically updates the attention and MLP layers in the mask
decoder during training, promoting cross-network depth spatial-semantic consis-
tency between shallow and deep features.

Intra-layer Feature Decorrelation To eliminate channel redundancy within
encoder blocks, features undergo normalized self-distillation. For each feature
map f ∈ RB×C×H×W , we first compute channel importance scores through
spatial L2-normalization:

f̂ (b,c) =
f (b,c)

∥f (b,c)∥2
, ∥f (b,c)∥2 =

√√√√ 1

HW

H∑
h=1

W∑
w=1

(f (b,c,h,w))2. (3)

Channels are ranked by their mean activation magnitude across the batch:

τ = argsort

(
1

B

B∑
b=1

∥f̂ (b,c)∥2

)C

c=1

, descending order. (4)

The intra-layer loss enforces similarity between top- and bottom-ranked chan-
nel groups:

LIfd =
1

BC

B∑
b=1

C/2∑
c=1

∥∥∥f̂ (b,τc) − f̂ (b,τc+C/2)
∥∥∥2
2
. (5)

This creates a compressed yet discriminative feature representation by pe-
nalizing activation disparities between high- and low-saliency channels.

LSSFD = LCfd + LIfd. (6)

Through Equations (2) and (5), our framework achieves simultaneous inter-
layer semantic transfer and intra-layer feature compaction, crucial for medical
image analysis under limited supervision.

2.3 Edge-Guided Feature Branch

The intrinsic limitations of Transformer architectures in local feature extraction
compared to CNNs have been extensively documented [16]. Prior studies [9,17]
substantiate that incorporating CNNs branches into Transformer-based frame-
works significantly enhances model accuracy for detail-sensitive tasks. To address
the issue of weak edges in lesion regions in endoscopic polyp segmentation, we
introduce an EFB. The edge gradient of the original image is computed using
the Canny operator, while the image features mapped by the image encoder are
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filtered for EFGConv. The resulting edge features are then combined with the
edge gradient. In the mask decoder, we use iAFF for feature fusion to enhance
the decoder’s focus on edges.

Canny-Based Edge Gradient Extraction The Canny operator [11] com-
putes gradient intensity maps (Gσ) from raw endoscopic images:

Gσ =
√

(Hx ∗ Iσ)2 + (Hy ∗ Iσ)2, (7)

where Hx, Hy denote horizontal/vertical Sobel kernels, and Iσ represents Gaussian-
filtered input images.

Edge-Frequency Gated Convolution The EFGConv enhances edge discrim-
ination through frequency-domain feature recombination. Given encoder features
fe ∈ RC×H×W and edge map gc ∈ R1×H×W , the computation proceeds as:

flow = Gσ ∗ fe,
fhf = fe − flow,

(8)

where Gσ denotes a 7×7 Gaussian kernel with standard deviation σ = 3. The
high-frequency component fhf captures fine boundary details suppressed in con-
ventional encoder features.

The spatial attention mechanism combines edge priors with learned seman-
tics:

α = σ (W2 (ReLU (W1 ([fhf ∥ gc])))) , (9)

where W1 ∈ R(C+1)×(C+1) and W2 ∈ R(C+1)×1 represent 1×1 convolutional
transformations, ∥ denotes channel concatenation, and σ is the sigmoid activa-
tion.

The final feature map integrates amplified boundary signals with original
semantics through:

fout = iAFF ( (1 + α)⊙ fhf︸ ︷︷ ︸
boundary enhancement

, C3×3(fe)︸ ︷︷ ︸
semantic preservation

), (10)

where C3×3 denotes a 3×3 convolution maintaining dimensional consistency. The
iAFF introduces a multi-scale channel attention module, which resolves the prob-
lem of feature fusion resulting from inconsistent scales and semantics. The use
of iAFF to fuse edge features with the original semantics avoids the model’s
excessive attention to edges.

3 Experiments and Results

3.1 Datasets and Evaluation Metric

Datasets The performance of CDPolypNet is evaluated using five widely recog-
nized benchmark datasets for polyp segmentation: Kvasir-SEG[34], CVC-ClinicD
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B[35], CVC-ColonDB[36], EndoScene-CVC300, and ETIS-LaribPolypDB[37], which
are extensively adopted in polyp segmentation research. The datasets were ran-
domly partitioned into three subsets: training, validation, and test sets, with
a ratio of 80%, 10%, and 10% respectively. To ensure fair comparison with
prior SOTA methods, we adopted the fixed test dataset configuration provided
by PraNet. Consequently, only Kvasir-SEG and CVC-ClinicDB contain both
training and test splits, while CVC-ColonDB, EndoScene-CVC300, and ETIS-
LaribPolypDB were exclusively employed for testing purposes.

Evaluation Metric Performance evaluation is performed using two widely used
metrics: Dice and IoU. Dice measures the degree of overlap between predicted
segmentation and real segmentation. The IoU calculates the ratio of intersection
and union between the predicted region and the real region.

3.2 Implementation Details

The proposed framework is implemented in PyTorch and trained on an NVIDIA
RTX 3090 GPU. We adopt the Adam optimizer with an initial learning rate of
0.01 and batch size of 4, decaying the rate by 20% every 5 epochs over 30 total
epochs. All endoscopic images are resized to 1024×1024 resolution using bicubic
interpolation and normalized to [0,1] range. To enhance model robustness, we
apply real-time data augmentation including random horizontal flipping and
±15° rotation during training.

3.3 Results

Comparative Results As demonstrated in Table 1, our method surpasses
the SOTA polyp segmentation approaches in all benchmark datasets. Notably,
CD-PolypNet achieves an average Dice coefficient of 0.917 and an IoU of 0.867,
outperforming the previous best method, Polyp-PVT (with an average Dice
coefficient of 0.870 and an average IoU of 0.804), by 4.6 and 5.2 percentage
points, respectively. Compared to SAM-based methods, our framework exhibits
superior performance on all datasets except ClinicDB and EndoScene. Moreover,
we observed that ASPS also utilized a CNN branch to improve local feature
extraction, achieves strong performance. This further proves that dual-stream
architectures work effectively in SAM-based medical frameworks.

It’s important to note that our model shows improved generalization on the
ColonDB, ETIS, and EndoScene datasets. Our model achieves substantial gains
of 9 percentage points in Dice coefficient and 12.9 percentage points in IoU on
ColonDB, along with 4.2 percentage points in Dice and 10.8 percentage points
in IoU improvements on ETIS compared to SOTA. Additionally, on the En-
doScene dataset, our model achieves a Dice score of 0.913, which is very close to
the SOTA, with an IoU improvement of 0.2 percentage points. These results con-
firm that our framework successfully adapts SAM’s generalization capabilities
to medical imaging domains while preserving its inherent robustness.
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Table 1. Performance comparison of different methods on polyp segmentation
datasets. Bold indicates the best scores and underline denotes the second best.

Methods Published Kvasir ClinicDB ColonDB ETIS EndoScene
mDice mIoU mDice mIoU mDice mIoU mDice mIoU mDice mIoU

U-Net[18] MICCAI’15 0.818 0.746 0.823 0.755 0.504 0.436 0.398 0.335 0.710 0.627
PraNet[19] MICCAI’19 0.898 0.840 0.913 0.84 0.709 0.640 0.628 0.567 0.871 0.797
UNet++[27] TMI’20 0.821 0.743 0.794 0.729 0.504 0.436 0.401 0.344 0.707 0.642
SANet[20] CVPR’20 0.904 0.847 0.916 0.859 0.753 0.670 0.750 0.654 0.888 0.815
TransFuse[21] MICCAI’21 0.920 0.870 0.942 0.897 0.781 0.706 0.737 0.826 0.894 0.654
ADSNet[28] JAG’21 0.920 0.871 0.938 0.890 0.815 0.730 0.798 0.715 0.890 0.819
LDNet[22] MICCAI’22 0.912 0.855 0.932 0.872 0.794 0.715 0.778 0.707 0.893 0.826
SSFormer[23] MICCAI’22 0.917 0.864 0.906 0.855 0.802 0.721 0.796 0.720 0.895 0.827
Polyp-PVT[30] TMI’22 0.917 0.864 0.937 0.889 0.808 0.727 0.787 0.706 0.900 0.833
CFANet[29] PR’23 0.915 0.861 0.933 0.883 0.743 0.665 0.732 0.655 0.893 0.827
TransUnet[31] MIA’24 0.913 0.857 0.935 0.887 0.781 0.699 0.731 0.824 0.893 0.660
SAM-H ICCV’23 0.778 0.707 0.547 0.500 0.441 0.396 0.517 0.477 0.651 0.606
SAM-L ICCV’23 0.782 0.710 0.579 0.526 0.468 0.422 0.551 0.507 0.726 0.676
SAM-Adapter[24] ICCV’23 0.847 0.763 0.774 0.673 0.671 0.568 0.590 0.476 0.815 0.725
AutoSAM[33] ArXiv’23 0.784 0.675 0.751 0.642 0.535 0.418 0.402 0.308 0.829 0.739
SAMPath[32] MICCAI’23 0.828 0.730 0.750 0.644 0.535 0.418 0.555 0.442 0.844 0.756
SurgicalSAM[25] AAAI’24 0.740 0.597 0.644 0.505 0.460 0.330 0.342 0.238 0.623 0.472
MedSAM[4] Nature’24 0.862 0.795 0.867 0.803 0.734 0.651 0.687 0.604 0.870 0.798
ASPS[26] MICCAI’24 0.920 0.858 0.951 0.906 0.799 0.701 0.861 0.769 0.919 0.852
Proposed 0.933 0.877 0.945 0.898 0.889 0.830 0.903 0.877 0.913 0.854

Ablation Results We conducted comprehensive ablation studies across five
datasets to validate the efficacy of our proposed components. As summarized
in Table 2, the baseline model (fine-tuned SAM) achieves 0.792 Dice coefficient
and 0.721 IoU, while separate integration of SSFD and EFB improves these
metrics by 9.5 percentage points in Dice and 12.5 percentage points in IoU for
SSFD, and 10.1 percentage points in Dice and 13.5 percentage points in IoU for
EFB, respectively. The CD-PolypNet, combining both modules, demonstrates
synergistic enhancement with 12.5 percentage points improvement in Dice and
14.6 percentage points improvement in IoU compared to the baseline.

Table 2. Ablation study of architectures composed of different modules across five
distinct benchmarks. Bold indicates the best scores.

SAM-L SSFD EFB Kvasir ClinicDB ColonDB ETIS EndoScene
mDice mIoU mDice mIoU mDice mIoU mDice mIoU mDice mIoU

✓ 0.782 0.710 0.579 0.526 0.468 0.422 0.551 0.507 0.726 0.676
✓ ✓ 0.926 0.867 0.937 0.884 0.859 0.808 0.824 0.838 0.890 0.832
✓ ✓ 0.930 0.874 0.943 0.894 0.862 0.813 0.831 0.865 0.900 0.832
✓ ✓ ✓ 0.933 0.877 0.945 0.898 0.889 0.830 0.903 0.877 0.913 0.854
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4 Conclusion

We proposed CD-PolypNet, a cross-domain polyp segmentation network with in-
ternal feature distillation and dual-stream boundary focus via large vision model.
The proposed SSFD enables efficient knowledge transfer from foundation models
under limited medical annotations. EFB explicitly addresses the persistent chal-
lenge of weak boundary discrimination in endoscopic imaging. Extensive evalu-
ations demonstrate the superior capability of our method in capturing clinically
critical regions and maintaining robustness across diverse colonoscopy environ-
ments. This work demonstrates an effective pathway to tailor general vision
models for medical segmentation tasks while preserving their intrinsic general-
ization strengths.
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